A Fun Rational Equation

แชร์
ฝัง
  • เผยแพร่เมื่อ 17 ม.ค. 2025

ความคิดเห็น • 33

  • @leickrobinson5186
    @leickrobinson5186 ปีที่แล้ว +12

    A fun and *golden* rational equation! 😄

  • @mokouf3
    @mokouf3 ปีที่แล้ว +4

    The graph for this equation should have a hole at origin, since we can't just divide 1 by 0.
    y/x is the golden ratio number or its conjugate, both of them irrational, hence no rational points.

  • @justabunga1
    @justabunga1 ปีที่แล้ว +3

    We can solve for y by multiplying everything by the LCD, which is xy(x+y). That equation is y(x+y)-x(x+y)=xy. Using distributive property and moving one side to the other changes this as xy+y^2-x^2-xy-xy=0. Rearranging in terms of y yields the equation as y^2-xy-x^2=0. You can solve for y by using the quadratic formula, so y=(-(-x)±√((-x)^2-4(1)(-x^2)))/(2(1)). Simplifying this expression is (x±√(x^2+4x^2))/2, or (1±√(5))x/2. That graph has two lines that looks like it's going to intersect at x=o, but it is not there at that point and should have a hole to show a point of discontinuity.

  • @ianfowler9340
    @ianfowler9340 ปีที่แล้ว +3

    It is also interesting to note that this equation is related to a conic section (ellipse, parabola, hyperbola) which has been rotated about the origin through an angle t. The presence of the xy term indicates the rotation. The General Form is : ax^2 + 2hxy + by^2 = k. Without going into the details, you can determine the angle, t, that the conic has been rotated through by solving: tan(2t) = 2h/(b-a)
    and also determine what type of conic section you have by evaluating the expression : ab - h^2.
    ab - h^2 > 0 ===> ellipse
    ab - h^2 = 0 ===> parabola
    ab - h^2 hyperbola.
    So: x^2 + xy - y^2 = k has a=1, h=1/2,b=-1. Note the k and not 0. I'll get to that. These values of a, b, h give us ab - h^2 = (1)(-1) - (1/2)^2 = -5/4 indicating a hyperbola. If you replace the k with a 0 you get what is called a degenerate hyperbola. A hyperbola has 2 straight line asymptotes. As k ---> 0 the hyperbola degenerates into these 2 straight lines.
    So x^2 + xy - y^2 = 0 is a degenerate hyperbola. i.e the 2 straight line asymptotes you have given as your solution.
    Cheers.

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      Wow, nice work! 🤩

    • @ianfowler9340
      @ianfowler9340 ปีที่แล้ว +1

      ​@@SyberMath Thanks. I taught this for many years in High School in Ontario. Here's what my students could do as a standard "put it all together" problem. Try it as a challenge.
      Place the following conic in "standard position" by applying a rotation followed by a translation. Use the transformations you have found to find the foci of this equation.
      5x^2 + 8xy + 5y^2 + 13[sqrt(2)]x + 5[sqrt(2)]y = -16. So you can check: Foci are: ( 2 - 5/sqrt(2) , -2 + 3/sqrt(2) ) and ( -2 - 5/sqrt(2) , 3 + 3/sqrt(2) )
      The two 5's might mislead you into thinking this is a circle. It isn't.

    • @anonymoushere7786
      @anonymoushere7786 ปีที่แล้ว

      ​@@ianfowler9340 is it related to conic section?

  • @manioqqqq
    @manioqqqq ปีที่แล้ว +1

    I love these!

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      Glad to hear that! 🤩

  • @behruzjonsultonov9026
    @behruzjonsultonov9026 ปีที่แล้ว +1

    Good luck 🍀

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      Thank you 😁

  • @popitripodi573
    @popitripodi573 ปีที่แล้ว +1

    Very nice! I used the second method!!!!❤❤❤

  • @BOBPERIO2
    @BOBPERIO2 ปีที่แล้ว

    Love your videos! Keep up the great work! 👍🏻

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      Thank you! Will do!

  • @ardiris2715
    @ardiris2715 ปีที่แล้ว +2

    Should the graph have a circle at the origin since x ≠ 0 and y ≠ 0?
    (:

    • @SyberMath
      @SyberMath  ปีที่แล้ว +1

      yes but desmos does not show open dots as far as I know

  • @knutthompson7879
    @knutthompson7879 ปีที่แล้ว

    That was golden

  • @ks2091
    @ks2091 ปีที่แล้ว +1

    also notice how the lines are perpendicular to each other because of the golden ratio

    • @SyberMath
      @SyberMath  ปีที่แล้ว +3

      A Golden Intersection! 🤩

  • @juanmolinas
    @juanmolinas ปีที่แล้ว

    Nice golden video!

  • @scottleung9587
    @scottleung9587 ปีที่แล้ว +2

    Cool - I used the second method, except I didn't substitute.

  • @khundeejai7945
    @khundeejai7945 ปีที่แล้ว

    Multiplying both sides with x+y we get y/x-x/y=1 or (y/x)^2-(y/x)-1=0 which can be solved with quadratic formula.

  • @NeilGrahamShaw
    @NeilGrahamShaw ปีที่แล้ว

    Here is a slightly shorter solution:
    1/x+1/y=x+y
    y+x=xy(x+y)
    y+x-xy(x+y)=0
    (x+y)(1-xy)=0
    x+y=0 or 1-xy=0
    y=-x or y=1/x where x≠0 and y≠0

  • @imonkalyanbarua
    @imonkalyanbarua ปีที่แล้ว

    But what about the point of origin (0,0)? This point satisfies both the equations but can they be a solution to the original equation? I mean will it satisfy 1/x - 1/y = 1/(x+y)?

  • @Roblesgt
    @Roblesgt ปีที่แล้ว

    The solution is number Aureo

  • @alexandermorozov2248
    @alexandermorozov2248 ปีที่แล้ว

    Fun! Great! =)

  • @alextang4688
    @alextang4688 ปีที่แล้ว

    Nice results!😏😏😏😏😏😏