Solving A Power Tower

แชร์
ฝัง
  • เผยแพร่เมื่อ 17 ม.ค. 2025

ความคิดเห็น • 54

  • @valemontgomery9401
    @valemontgomery9401 ปีที่แล้ว +16

    I love when seemingly infinite functions have a normal function equivalent

    • @MA-bm9jz
      @MA-bm9jz ปีที่แล้ว +4

      Not necesarly, he skipped trough the part of showing that the sequence a_n=x^x^x...^x n times converges, which is not that trivial, is actually the crux of the problem, finding the limit is the easy part

    • @gregsavitt7176
      @gregsavitt7176 ปีที่แล้ว

      @@MA-bm9jz Indeed. However, that is the domain of upper lower mathematics. I don't think real analysis is in the scope of this channel.

    • @MA-bm9jz
      @MA-bm9jz ปีที่แล้ว +1

      @@gregsavitt7176 yeah, but its still incomplete, thats the whole point of the exercise

    • @SyberMath
      @SyberMath  ปีที่แล้ว +1

      Glad to hear that!

  • @prof.williamm.457
    @prof.williamm.457 ปีที่แล้ว +6

    Very interesting. A problem with many conclusions. Nice!!

    • @thedeathofbirth0763
      @thedeathofbirth0763 ปีที่แล้ว

      Prof. William M can you please show how he finds his different powers of (1/4)?

    • @prof.williamm.457
      @prof.williamm.457 ปีที่แล้ว

      @@thedeathofbirth0763 I meant that this problem suggests some interesting implications, not other solutions. 👍

    • @SyberMath
      @SyberMath  ปีที่แล้ว +1

      Glad you liked it!

  • @bucc5207
    @bucc5207 ปีที่แล้ว

    "We're just going to keep it light." Why I love this channel.

  • @glooming1267
    @glooming1267 ปีที่แล้ว +1

    By your explanation, it can be x^x^(1/2) = 1/2, and also x^x^x^(1/2) = 1/2. So confusing.

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      Correct. They’re all satisfied by the same x value

  • @AllanPoeLover
    @AllanPoeLover ปีที่แล้ว +1

    7:55 again I can't agree this part. When you take the real value of squt(2) you get 1.414....
    Then 1.414^1.414^1.414^1.414........... it lead to infinite value, so it's NOT convergence, so e^(1/e) is not the peak value of anything > 1 to it's own infinite power tower.
    I agree the whole other part of this video for the original equation is the correct process and lead to the right answer 1/4.
    But it's quite eeric to prove an number > 1 to it's ower infinite power tower lead to convergence. It obviously can be prove to be not possible by just take a check in real value.
    I think it's a enigma in mathematica.

    • @msathwik8729
      @msathwik8729 ปีที่แล้ว

      Yes you are right

    • @ZipplyZane
      @ZipplyZane ปีที่แล้ว

      Are you following the correct order of operations? Remember x^y^z = x^(y^z), not (x^y)^z.
      In fact, (x^y)^z = x^(yz).

    • @AllanPoeLover
      @AllanPoeLover ปีที่แล้ว

      @@ZipplyZane No matter which power rule you use, they all lead to infinite in the end.

    • @Diddmaster
      @Diddmaster ปีที่แล้ว +1

      You are wrong.
      sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^... = 2

    • @Diddmaster
      @Diddmaster ปีที่แล้ว +1

      @@AllanPoeLover
      Look up tetration with infinite heights!

  • @mehrdadbasiri9968
    @mehrdadbasiri9968 ปีที่แล้ว

    That was very nice...
    Thanks for your great video...👍👍👍.

  • @hafizusamabhutta
    @hafizusamabhutta 11 หลายเดือนก่อน

    How do you make these videos? Please reply

  • @popitripodi573
    @popitripodi573 ปีที่แล้ว

    Perfect!!! Thank you ❤❤❤❤

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      You're welcome 😊🧡

  • @lassikokkonen5618
    @lassikokkonen5618 ปีที่แล้ว +3

    I tried calculating it in my head and got x=4 as an answer because for some reason I thought sqrt(2)=2^(-1/2).
    Redid the calculation and got x=1/4

  • @The_To_Be
    @The_To_Be ปีที่แล้ว +1

    Nice and interesting problem, thanks!

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      Np. Thank you!

  • @IorPerry
    @IorPerry ปีที่แล้ว

    8:10 why compare values with e^(1/e), shouldn't we compare them with e ?

    • @klopkerna3562
      @klopkerna3562 ปีที่แล้ว

      Because it's the image from the function

  • @mathman15
    @mathman15 ปีที่แล้ว +1

    That's a interesting problem thanks for that

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      No problem 👍

  • @pauselab5569
    @pauselab5569 ปีที่แล้ว +1

    There is a very interesting vid by 3b1b in infinite power tower.

  • @broytingaravsol
    @broytingaravsol ปีที่แล้ว +1

    x=1/4

  • @neowong7224
    @neowong7224 ปีที่แล้ว +1

    It caused one more confusion. We can also say square root of x^x equal to 1/2, in this case, x is not 1/2. Who can answer me?

    • @Marius_Biggest_Fan
      @Marius_Biggest_Fan ปีที่แล้ว +1

      x would equal -2

    • @chrissekely
      @chrissekely ปีที่แล้ว

      I agree, there are different ways to solve this problem. If we use yours, we'll still get the same answer (or so I thought...) Let's see:
      2^(x^x)^(x^x)^(x^x)...=2^(1/2)
      (x^x)^(x^x)^(x^x)...=(1/2)
      (x^x)^(1/2)=(1/2)
      (x^x)=(1/4)
      This is where I had to use Wolfram-alpha. :(
      Chaos Insurgency is correct. This leads to the answer x=-2, which is definitely not x=1/4. So you are also correct. But why?
      Can anyone else help? Please.

    • @robertveith6383
      @robertveith6383 ปีที่แล้ว +2

      @ Everyone -- It is not the same. For example, (x^x)^(x^x) = x^(x*x^x) = x^[x^(x + 1)]. When x = 2, for example, this equals 2^8. In contrast, x^x^x^x = x^(x^(x^x)). When x = 2 here, this equals 2^16.

    • @Marius_Biggest_Fan
      @Marius_Biggest_Fan ปีที่แล้ว +1

      @Robert Veith I was answering the original question, but yes, you have to start at the top of a power tower for the correct answer, and grouping can cause issues

  • @stevenbastien9028
    @stevenbastien9028 ปีที่แล้ว +1

    I get very frustrated with these problems. I have seen so many problems with powers where the order of operations is not clear. The convention that I'm used to is 2^3^4 means (2^3)^4 and not 2^(3^4). After the problem is solved it becomes clear which convention is being used. Why does there seem to be no standard for this? I post comments every time I see it and never get a clear answer. If I use Matlab and plug x-=1/4 into 2^x^x^x... the answer is 1 and not sqrt(2). This is the same convention I was taught, but obviously many others are taught the other convention. It takes all the fun out of the problems when I have to guess at the convention, or look at the video to figure out the convention before I can take a crack at it.

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      Sorry if it makes you feel that way.
      Check this out: postimg.cc/62Ld1dT1
      Source: en.wikipedia.org/wiki/Order_of_operations

    • @stevenbastien9028
      @stevenbastien9028 ปีที่แล้ว

      @@SyberMath Thank you. I will check that. By the way I mean nothing bad against you or others. I just have seen this issue on so many videos. I really want to understand if there is more than one accepted standard, or if I'm missing something obvious that is clear to others.

  • @mega_mango
    @mega_mango ปีที่แล้ว +1

    x^x^... = y = 0,5
    x^y = x^0,5 = 0,5
    (x^0,5)² = x = 0,25
    To easy but interesting 🙂

  • @thedeathofbirth0763
    @thedeathofbirth0763 ปีที่แล้ว +1

    I am really embarrassed, but how do you calculate your powers of 1/4. When I use (X^n)^m= (X)^(m.n) so for instance (.25)^(1/16) I get a different answer or (.25)^(1/64). Can you please elaborate for us less mathematically talented who are still in high school.

    • @SyberMath
      @SyberMath  ปีที่แล้ว +3

      No need to be that way! You're fine 😊
      This is not the same as (x^x)^x which is x^(x^2)
      What we have is x(x^x)
      For x=1/4 this is (1/4)^{(1/4)^(1/4)}
      We calculate (1/4)^(1/4) first which 1/sqrt(2) then we raise 1/4 to the power that

  • @alinayfeh4961
    @alinayfeh4961 ปีที่แล้ว

    The best answers 👌 for the equation [x=-2],x=[(1/4]

  • @michaelpurtell4741
    @michaelpurtell4741 ปีที่แล้ว

    Good video : answer obvious if exists…. great discussion of existence

  • @barakathaider6333
    @barakathaider6333 ปีที่แล้ว

    👍

  • @batiennguyen7687
    @batiennguyen7687 ปีที่แล้ว

    In your solutions :
    (2)^x^x^x... = (2)^1/2
    (x)^x^x... = 1/2
    (x)^1/2 = 1/2
    ... ... ... (Can that is?) - Please you show me.

  • @JimmyBaevsky
    @JimmyBaevsky ปีที่แล้ว

    x^x^x...=1/2😂

  • @FenetreSurLeMonde
    @FenetreSurLeMonde ปีที่แล้ว

    Again ??

  • @堀勇作-l5p
    @堀勇作-l5p ปีที่แล้ว

    答え x=i

  • @ncrean66
    @ncrean66 ปีที่แล้ว

    You can NOT define 2^x^x^x.. as a recursive infinity, this is a nonsense. So the only sensible definition of 2^1/4^1/4^1/4.. would give 2^0 = 1 )!