A Nice Diophantine Equation

แชร์
ฝัง
  • เผยแพร่เมื่อ 17 ม.ค. 2025

ความคิดเห็น • 29

  • @walterufsc
    @walterufsc ปีที่แล้ว +21

    a²b³ = 6^6 = (2² 3²)³
    a² = (2² 3² / b)³
    As only integer solutions are admitted, the right side of the equality must be a perfect square, since the left side is equal to a². Then:
    b = 1 ==> a² = (2² 3²)³ ==> a = ±(2 . 3)³ = ± 216
    b = 2² ==> a² = (3²)³ ==> a = ±3³ = ± 27
    b = 3² ==> a² = (2²)³ ==> a = ±2³ = ± 8
    b = 2² 3² ==> a² = 1³ ==> a = ±1³ = ± 1
    All solutions: (-216 , 1) ; (216 , 1) ; (-27 , 4) ; (27 , 4) ; (-8 , 9) ; (8 , 9) ; (-1 , 36) ; (1 , 36)

  • @WahranRai
    @WahranRai ปีที่แล้ว +2

    My method, raise to power 1/6 both sides --->
    a^(1/3) * b^(1/2) = 6 ---> b^(1/2) must be divisor of 6 ---> b^(1/2) = 1, 2 , 3, 6 ----> b = 1, 4, 9, 36
    substitute and you have corresponding values of a

    • @ralkadde
      @ralkadde ปีที่แล้ว

      Great and simple way of solution!

  • @deltalima6703
    @deltalima6703 ปีที่แล้ว +2

    You have done math proud by including complex solutions in many of these problems. Can you do a series that includes quaternion solutions to many of these problems?
    I recognize that this particular one is limited to integers.

  • @dentonyoung4314
    @dentonyoung4314 ปีที่แล้ว +1

    Very nice solutions. Eight in all, neatly found.

  • @broytingaravsol
    @broytingaravsol ปีที่แล้ว +12

    ​a=±8, b=9; a=±27, b=4

  • @DrQuatsch
    @DrQuatsch ปีที่แล้ว +2

    a^2 * b^3 = 6^6. Now raise both sides to the power of 1/6. cbrt(a) * sqrt(b) = 6. I'll divide both sides by cbrt(a) and then square both sides to get: b = [6 / cbrt(a)]^2. Notice that b has to be an integer, so the RHS is also an integer. Therefore cbrt(a) has to be a divisor of 6. This gives us cbrt(a) = +-1, +-2, +-3, +-6. Therefore a = +-1, +-8, +-27, +-216. And if you put these into the formula for b, we get b = 36, 9, 4, 1. Therefore the solutions are: (a,b) = {(1, 36),(-1,36),(8,9),(-8,9),(27,4),(-27,4),(216,1),(-216,1)}.

  • @j.r.1210
    @j.r.1210 ปีที่แล้ว +1

    I found it simpler just to note that 6^6 = 2^6 * 3^6 OR 1^6 * 6^6. Either way, we have two factors on the left and two factors on the right. So, just set them equal to each other and find all the combinations. E.g., let a^2 = 2^6. Solve for a. Then b^3 = 3^6. Solve for b. Then let a^2 = 3^6. Etc. It's pretty quick, and doesn't even require paper.

    • @SyberMath
      @SyberMath  ปีที่แล้ว +1

      Are those all the solutions?

    • @j.r.1210
      @j.r.1210 ปีที่แล้ว +1

      @SyberMath Have I listed all the solutions in my comment? No, obviously not. That's why I wrote, "Etc." Does this method yield all the solutions when followed all the way? Yes, I believe so.

  • @angelamusiema
    @angelamusiema ปีที่แล้ว

    (2*3)^2=6^2 per la regola dei prodotti notevoli di moltiplicazione

  • @rakenzarnsworld2
    @rakenzarnsworld2 ปีที่แล้ว

    a = 8, b = 9 / a = 27, b = 4
    a = 216, b = 1 / a = 1, b = 36

  • @mohitg196
    @mohitg196 ปีที่แล้ว +1

    If two equations having two variables and same same coefficients of the variables then the lines are same.

  • @mariomestre7490
    @mariomestre7490 ปีที่แล้ว

    Genial, m' encantan les Equacion Diofàntiques 🐾🎸

  • @alexandermorozov2248
    @alexandermorozov2248 ปีที่แล้ว +2

    8^2х9^3
    a=8, b=9

  • @justinnitoi3227
    @justinnitoi3227 ปีที่แล้ว

    I prime factored and noticed that b^3 can only be 1,2^6,3^6 and 6^6

  • @textbooksmathematicstutorials
    @textbooksmathematicstutorials ปีที่แล้ว

    I do not understand how to do this one.

  • @Germankacyhay
    @Germankacyhay ปีที่แล้ว

    Як завжди 🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥
    Дякую.

  • @-basicmaths862
    @-basicmaths862 ปีที่แล้ว +2

    a=8,&b=9, don't ask why

  • @outroraoutrem4842
    @outroraoutrem4842 ปีที่แล้ว

    Why did he define a² = 2^x×3^y?

  • @barakathaider6333
    @barakathaider6333 ปีที่แล้ว

    👍

  • @alexandermorozov2248
    @alexandermorozov2248 ปีที่แล้ว

    a=1, b=36 :)
    or
    a=216, b=1

  • @scottleung9587
    @scottleung9587 ปีที่แล้ว +1

    Got 'em all!