Любопытно было посмотреть это видео "через 6 лет". Прогресс очевиден. Современные видео от этого автора лучше, качественнее, чётче. Заметно, какой огромный путь пройден за это время
Мне наоборот больше нравятся старые видео, они более содержательные, новые видео это научпоп на подобии топлеса, а здесь реально математика. Просто массовому зрителю это не интересно
@@СтепанДнепров согласен. Наверное, каждый блогер однажды должен принять такое решение: раскрывать серьезные вещи тысячам или всякую развлекательную ерунду миллионам
Иногда спрашиваю себя: "Зачем мне это?" . Хочется не просто зубрить, знать формулы, иметь 5 в зачётке, а видеть математику как живую систему: применять её там, где тебе хочется, а применять её можно везде.
Начал, неожиданно для всех, заниматься науками, и начал задавать вопросы: "Что такое производная? Чем руководствовались при её "открытии" ", но так и не узнал ни от репетитора(уч. математики), ни от первых страниц (а там функция немного разбиралась) книги Шинтан'а Яу "Теория струн" что же это такое. Для меня, как интересующегося науками, важно понимать саму суть физич. явлений(как минимум представлять их), так и видеть и понимать матем. процессы. Видео однозначно ставлю лайк, и выражаю свою благодарность Артуру.
А мне вот не очень понятно как можно заниматься хотя бы той же школьно базой, не зная зачем вообще нужна математика и физика... не зная к чему ведут эти скучные уроки, а они в том-то и дело, что скучные. Учителя не заинтересовывают, да и родители не дают никакой грамотности. Поэтому я сначала интересуюсь, а том изучаю, иначе это как-то глупо, делаю то не зная для чего...
Терпеть не могла физику, химию, математику и подобное из-за неумения учителями рассказывать предмет должным образом и связывая его с жизнью. Просто в воздухе все летало.
Никитос, поддерживаю. В школе никогда не понимал, нахрена я учился алгебре. Вот с геометрией проще, там всем понятно как посчитать площадь периметр объем и для чего применять. Как зная углы или только катет с углом найти длинны сторон треугольника или прочего объекта и это можно применить практически. Но то что делает интеграл производная и прочая чушь, в которой я как и ты пытаюсь самостоятельно разобраться, мне еще не ясно. В школе не говорили где применяется и как на практике. Я вот пошел на второе высшее и у меня выходит, что будут хвосты по высшей математике. Как раз будет время задалбывать препадов, чтоб они все досконально рассказывали, а самое главное показывали, как это все применять.
Начинал смотреть Артура ещё с ранних видео по математике, прослезился. Спасибо за то, что подпитывал интерес юного школьника к математике, которую он не понимал, но считал интересной)
Зачем так сложно и путано? Если положение точки при её движении по числовой прямой задаётся функцией S = f(t), где t - время движения, то производная функции S - мгновенная скорость движения в момент времени t. По аналогии с этой моделью вообще говорят о том, что производная функции у = f(x) - скорость изменения функции в точке х. Вторая производная соотвественно определяет ускорение. Вот это и есть физический смысл. Физика , она всегда простая как хозяйственное мыло. Математики это великие люди, с удивительным абстрактным мышлением, но чтобы их понять нужен Дар Божий :)
@@Zed_s_Dead. Скорость изменения в точке, ты блть вчитайся в это. Это блть просто точка! P.S. на самом деле производная-это функция ускорения графика. Мы принимаем её геометрический смысл за точку, потому-что дельта икс стремится к нулю и этим слагаемым можно пренебречь из-за чего и получаем точку. Но говорить про измение функции в точке x-мне кажется, это бред.
+Мроо Мрод А ты думаешь,что сейчас что-нибудь понял? Ведь этот парень,наверняка, ничего нового по сравнению с твоей учительницей не сказал,он просто жонглирует "умными" фразами,но,скорее всего,сам не очень понимает суть объясняемого.
Артур молодец я учусь а 9 классе а благодаря нем понял суть производной и первообразной! Думаю пойти к интегралам, а до этого я смотрел другие видео про производные и ничерта не понял! Так что Артур молодец! Лайк.
@@Leichtinn вот именно. Ничего этот паренек в видео не рассказал, просто как все в очередной раз пересказал правила, также бессмысленно как правила в шахматах, мол: " _если эта фигрузка здесь, то действуешь вот так_ ". Полная каша никому не нужная. Математика без прямого применения не математика.
Прекрасно знаю что такое производная, решил посмотреть пока ехал в электричке и... Хрень кароче. Куча не нужной информации. Хорошо, что я не учил это по его видео
Столько гневных комментов на своих учителей по математике и хоть бы один догадался в свое время, открыть учебник именно по физике, где вся физическая суть функций, формул, отношений и производных более чем разжевана.
... и хоть бы один догадался в свое время открыть... // … вы очень многого хотите от обыкновенного среднестатистического ребенка-пятиклассника))... и потом дело не в просто "открыть", нужно еще осознавать, что и зачем ты, собственно, изучаешь?... для подростка без определенной мотивации и кураторства учителя, согласитесь, такое трудновато)...
Артур, ты молодец! Я нифига в математике не понимаю, но тебя все равно интересно слушать, ты очень умный ))) Желательно только говорить или чуть медленнее или делать паузы для переваривания информации у зрителя ;) Удачи тебе!!!
Артур, подача материала отличная! Повнимательнее пожалуйста с оговорками: ускорение это не вторая производная скорости, а вторая производная пути;) или первая производная скорости✌️ пожалуйста разбавляй материал ссылками на имена ученных и прикладным использованием знаний... К примеру в автомобилестроении, строительстве, аэродинамике, гидродинамике, биологии, астрономии...
Артур молодец я учусь а 9 классе а благодаря нем понял суть производной и первообразной! Думаю пойти к интегралам, а до этого я смотрел другие видео про производные и ничерта не понял! Так что Артур молодец! Лайк.
До меня всё никак не доходил смысл производной, хотя с математикой проблем особых нет, И только сейчас ! Только сейчас на меня будто снизошло озарение . Я рада что наткнулась на этот видео урок!!!! =)
Наконец-то я понял, что там лет десять назад в школе проходил... Я тогда сколько не пытался понять, что они там считают, ни в какую не шло... У меня сейчас гуманитарное образование и недавно я начал понимать, что химия это офигенно, а теперь вот нашел прям ответ на вопрос детства из области математики)) Вот так бы объясняли, ЧТО я считаю, что эти формулы значат... Кажется, в школе, как правило, один хороший преподаватель и что он ведет - ту область знания ученики и будут знать, туда и пойдут, а остальное им будет казаться "не их"... Ебаная наше образование, даже не "система", а вся начинка целиком))) В 30 лет начинаешь чувствовать, ощущать плоды её работы и охуеваешь. Артуру Шарифову глубочайший респект)
Чувак, чувак, давай ещё видеоуроки делай пожалст, но что нибудь по сложнее, на уровне вузов. что нибудь интересное!!! А то егэ только для школьников =)
Артур, Вы молодец. Все круто... Спасибо за прекрасное объяснение. Скорость изменения скорости... Хорошо подчеркнуто. Короче, счёт насчёт счета...😄 напомнило фильм Блеф.
Наконец-то стало ясно . У меня диплом электроники и электричества ,а до просмотра этого видео так и не знала , что за фигня эта производная .Зашла в Википедию ,почитала и вообще испугалась ...Спасибо Артур !!!
кстати! производная х0 у всяких гипербол и тангенсов при х0, стремящемся к невозможному значению для этих функций (0, 45градусов), будет ооооочень большой.
Спасибо. Давайте я объясню что я понял, ибо есть такая техника, где если ты объясняешь изученное, то понимаешь глубже тему. И так: Производное это мгновенный slope, где за разницу в х, которая стремится к нулю, мы получаем мгновенную скорость ( не факт). То есть благодаря производному мы можем определить конкретную величину в variable который стремится к нулю. Извините за англицизм, ибо учился на нем
Артур, за крайне замечательное дело взялся! В этой стране дичайшая нехватка нормальных преподавателей, так что подобные начинания - чрезвычайно благое занятие. Успехов! P.S.: есть ли планы на подобное, но уже для вышки? Всякие матрицы там, тервер, матан...
Lex Darlog (SG) в этой стране нехватка трудолюбивых людей, существует n-ое количество книг , где описано что такое производная, ее физ. и геом. смысл, просто либо никто не хочет это искать и узнавать, либо не знает где это искать.
А помимо книг - есть ещё такие понятия, как "зона ближайшего развития" и "дидактика". Однако большинство преподов, работающих в гос. оброзовательных учреждениях - либо об этих понятиях ни сном ни духом, либо просто основательно кладут на них болт. Так что: 1. Ты можешь быть сколь угодно трудолюбивым, но если материал тебе преподают через жопу, то пытаться въехать самостоятельно - всё равно что бороться с ветряными мельницами. 2. многие учебники - словно специально написаны таким языком, чтоб его даже при всём желании было невозможно понять. 3. Покажи, пожалуйста: в чём именно твой коммент противоречит моему первому. Ты не согласен с тем, что Артур прекрасно излагает материал и в целом занимается благим делом - несёт знания в массы?
Артур, займись разбором задач ЕГЭ(математика, профиль) пожалуйста Прям по заданиям, я думаю будет актуально Ты очень хорошо объясняешь, только давай как можно подробнее)
Что-то не очень понятно объяснено. Точнее, смысл производной так и остался неясным. Почему мы берем именно скорость объекта? И зачем мы находим функцию на мизерном расстоянии от ее предыдущего значения... Хз, в голове не уложилось.
Потому что мы ищем "мгновенную скорость" скорость в определённой точке т.е. на бесконечно малом участке на таком малом, что хотя скорость и меняется постоянно, но на отрезке стремящемся к нулю изменение скорости тоже стремиться к нулю и её значение в начале этого участка отличается от скорости в конце участка на бесконечно малую величину т.е. может рассматриваться как постоянная, а в следующей точке или точнее на следующем бесконечно малом участке она тоже постоянна но имеет уже другое значение - другая мгновенная скорость. Скорость изменяющаяся со временем это просто самый наглядный пример который большинство может себе легко представить и вторая производная - ускорение тож всем знакома. Можно рассмотреть процес изменения давления газа в замкнутом объёме при постаянном равномерном или изменяющемся подводе энергии. Или тоже самое для находящихся в замкнутом объёме 2-х фаз: жидкости и газа когда с ростом температуры ускоряется переход жидкости в газ - "кипение" но при этом растёт давление что замедляет "кипение" но это не самый пдходящий пример для объяснения смысла производной.
@@KivanV @Иван К для рассчёта скорости и дальности полёта ракеты т.е.тела с переменной массой и колл. топлива, для рассчёта тормозного пути, сгорания топлива в цилиндре мотора, распространения взрыва, сложных многокомпонентных влияющих друг на друга процессов, везде где в системе происходят одновременно несколько процессов каждый из которых влияет на другой, когда не возможно получить конечный результат простым сложением формул описывающих каждый процесс по отдельности. Например в момент выстрела газы расширяются по известной относительно простой формуле. но пока весь порох сгорит пуля пройдёт уже какое то расстояние, описываемое другой формулой, значит в начале сгорания объём за пулей будет меньше чем в конце сгорания и изменяться этот объём будет не равномерно т.к. пуля будет ускоряться и ускорение тоже будет меняться под действием увеличивающейся силы давления. Короче скорость пули в какой то искомый момент зависит от ускорения, ускорение от силы давления, сила давления от объёма, объём от положения пули, положение пули от скорости.... и опять всё сначала по кругу. Вот возми тут и просто сложи всё вместе. Когда весь порох сгорел то дальше расширяются уже просто разогретые газы по другому закону (формуле) При этом ещё чем быстрее пуля тем сильнее тормозящие силы трения. Значит в начале они ничтожны а в конце максимальны. Чем дальше пуля прошла в стволе тем слабее давление и следовательно ускоряющая сила но тем сильнее торможение значит в какой то точке они станут равны и дальше пуля будет только тормозиться и опять же тем слабее чем меньше её скорость. В этом месте ствол должен закончиться но именно в этом месте что бы максимально использовать силу заряда. кроме того при расширении газа падает температура тоже по своему закону а значит это тоже снижает давление. Температура газа снижается и за счёт нагревания ствола этим газом. А ствол тоже постоянно отдаёт энергию окружающему воздуху и всё это тоже одновременно и по своим законам-формулам. От нагревания ствол расширяется - и опять же увеличивается объём за пулей. При последующих выстрелах ствол уже обладает другой начальной температурой и всё более и более высокой. Отсюда и рассчётный предел максимального числа эфективных выстрелов. Если нарисовать по отдельности все графики этих формул получиться запутанный клубок из линий. И если провести вертикальную линию что бы узнать какое же значение имеют все эти параметры в определённой точке ствола, то это ни чего не даст т.к все они на самом деле влияют друг на друга и в действительности будут иметь совсем другой вид чем по отдельности. Для этого и нужны производные функций по опр. параметрам. Вот по этому то расход топлива в ДВС упал с десятков литров у первых моделей до нескольких сот грам у современных экспериментальных моторов, а автомат Калашникова и наши ракетные двигатели лучшие в мире. А если проще то мы все пользуемся этими производными даже и не подозревая об этом. Вспомните задачу древних философов софистов. Эсхил ни когда не догонит черепаху потому, что пока он пробежит расстояние до того места где она была в момент старта то она хоть чуть чуть но пропалзёт вперёд и ему нужно будет пробежать и это расстояние, а она за это время проползёт ещё хоть пару миллиметров и на эти миллиметры ему снова нужно пусть ничтожно малое но время и т.д. до бесконечности и не важно как близко Эсхил к черепахе, догнать её он не сможет. С калькулятором многократно складывая эти расстояния (100+10+1+0,1 +0,01+0.001+0,0001....) мы можем досчитаться до кокого то значения которое будет настолько близко к конечному результату, что практически приближение не будет иметь значения. но теоретичесеи оперируя только расстоянием мы ни когда не получим абсолютный результат. А если вспомнить что расстояние зто производная от скорости. Скорость Эсхила 10 чего то там за чего то там (км в час, м в сек. парсеков в световой год), а черепахи 1 значит они сближаются со скоростью 9 значит расстояние на старте 9 разделить на скорость 9 получим 1(хотя может получиться тоже иррациональное число, это я просто так красиво подобрал цифры, но затраты времени минимальны) Также с калькулятором можно просчитать и пулю и любой процесс, но я даже и приблизительно не могу назвать колличество миллионов лет которые на это понадобятся если ТЕРРА-СУПЕР-ПУПЕР-байтные компьютеры тратят на некоторые рассчёты часы и дни
Артур, может рассмотришь задачу о брахистохроне? Через неё можно связать классическую задачу о скатывающемся теле по наклонной поверхности с интегралом (т.к. в школе, да и во многих ВУЗах всё это подаётся отдельно, без связи одного с другим)
Нормально, меня как то друг спросил че такое я ему сказал кинь камушек, он график тебе даст, и в каждой точке из этого графика камень будет иметь свою скорость. а далее уже не сложно догадаться как ее считать
Автор, когда делаешь выводы, типа "... предел такого отношения называется производной", делай паузы, - чтобы было время осмыслить инфу, - у всех разный темперамент. В такие моменты желательно визуализировать сказанное увеличенным изображением на экране, поставив паузу.
В физическом смысле понятно почему производная - это скорость, ибо процесс во времени. Я учусь на экономическом и мне нужно использовать производную в экономических расчетах, например, функция зависимости спроса от цены: спрос y и цена х. В данном случае о времени речи не идет, то есть мы просто строим предположение, что если цена будет такой-то, то спрос будет таким-то. Так вот вопрос: можно ли в данном случае производную рассматривать как РЕЗУЛЬТАТИВНОСТЬ прироста спроса в конкретной точке цены, ведь скорость - это вроде тоже как результат пройденного пути в конкретной точке времени? И если я, например, ищу точку экстремума (максимальную), то это я получается найду такую точку цены, которая имеет наибольший результат спроса ?
Та я знаю, что такое эластичность спроса. Просто я пытаюсь понять смысл всех терминов математического анализа, чтобы не бездумно их использовать. Это я просто привела пример какой-нибудь функции. Но эластичность, я так понимаю, это просто выражение в относительных величинах, а производная - в абсолютных.
"Рассчитать производную" Х от У можно если их взаимозависимость описывается математической функцией. Насколько я себе представляю спрос не зависит от цены не по параболе не по гиперболе ни по какй бы то нибыло иной строгой математической функции где каждому значению из области нахождения соответствует значение в области определения. Спрос, кроме цены, зависит от доходов, региона, времени года, погоды .......... отдалённости следующих выборов. Это всё не возможно описать классической алгеброй, для этого есть теория больших чисел, мат статистика........
И все же не очень понятно для чего нужна производная. Если производная - это скорость изменения функции в ЭТОЙ (какой-то конкретной) точке, то ее нельзя подсчитать, так как в конкретной точке скорость не изменяется. Скорость может изменяться между двумя точками, что и было показано в видео. И даже если мы посчитаем эти две точки как одну (из-за бесконечно малого расстояния между ними), то что нам это дает? Я так понимаю, что задача в том, чтобы узнать правило, по которому функция изменяет свое значение (чтобы зная значение функции не вычислять значение аргумента, из которого был получен результат, а сразу вычислить следующее значение). Но проблема в том, что функции бывают разные, и ведут себя по разному. Линейная функция в любой точке приростает на константу (поэтому можно просто прибавить ее к значению функции в какой-то точке, чтобы получить следующее), тогда как квадратичная, к примеру, такой константы не имеет. Но почему просто не вычислить значение функции по аргументу? Зачем прибегать ко всем этим пределам, чтобы узнать скорость изменения функции, которая фактически будет вычислена точько для данной точки? Или я чего-то не понимаю?
Ну представте что вам нужно разогнать ракету до определённой скорости причём она должна достич этой скорости в определённой точке. Масса ракеты всё время уменьшается значит при постоянной тяге ускорение увеличивается. Получается что скорость роста ускорения это уже третъя производная по времени, а если масса ракеты снижается не равномерно а всё быстрее и быстрее то ускорение растёт тоже не равномерно а всё быстрее и быстрее т.е. ускорение ускоряется с ускорением, то это уже 4-я производная. Утверждение, что скорость в конкретной точке не меняется ошибочно. Точка понятие математическое это просто положение - позиция постоянно движущегося тела в какой то момент времени. Тело в ней не замирает, а затем изменив скорость мгновенно "прыгает" в другую точку. Представте, что ускорение постоянно и равно 2 (V`=2x), т.е. движение тела описывается уравнением у=х² его график - парабола. Парабола не имеет прямых участков т.е. касательная в любой её точке не имеет другой паралельной себе касательной все они имеют различный угол наклона, а значит соответствуют разным скоростям движения в каждой точке даже в самых "близких" друг к другу "соседних" точках отдалённых друг от друга на бесконечно малое расстояние дельта касательные будут отличаться на бесконечно малый угол.
Смотрел какое-то другое нудное видое ( что-то про производные ), увидео снизу ваше видео, Артур.. Сразу тапнул на него😆 и послал ( про себя ) предыдущее!
Артур, спасибо, но я не разглядела, что ты писал на доске, ведь это дополнение к тому что ты говорил. Конечно, ты объясняешь чётко, но быстро говоришь, это тоже проблема, для тех кто слаб в математике.
Можно было бы употребить термин "касательная" и тут же на графике показать чему равна производная функции прям с размерностью... и чему равна производная производной...
Антошка подкажи с чего начать решение. В треуголн вписана окружность, которая возле углов отсекает вогнут сферическ треугольн площадями 9 ,16 и 25 кв.ед. Требуетсч найти площадь окружнлсти
Любопытно было посмотреть это видео "через 6 лет". Прогресс очевиден. Современные видео от этого автора лучше, качественнее, чётче. Заметно, какой огромный путь пройден за это время
А я как не понимал математику, так и не понимаю.
@@Kithzer Было бы желание. С пониманием математики никто не рождается.
Мне наоборот больше нравятся старые видео, они более содержательные, новые видео это научпоп на подобии топлеса, а здесь реально математика. Просто массовому зрителю это не интересно
@@СтепанДнепров согласен. Наверное, каждый блогер однажды должен принять такое решение: раскрывать серьезные вещи тысячам или всякую развлекательную ерунду миллионам
ага, огромный путь от производной до банана )))
Иногда спрашиваю себя: "Зачем мне это?" . Хочется не просто зубрить, знать формулы, иметь 5 в зачётке, а видеть математику как живую систему: применять её там, где тебе хочется, а применять её можно везде.
Иван Коляда Правда правда. Матем вокруг нас!
Займись машинным обучением, там все это используется.
Ну тогда ты не на тот канал зашёл.
Роман Рамирез а какие есть годные каналы?
@@Tetrus Я вовсе не имел ввиду, что это не "годный" канал, а лишь то что автор всё таки слишком "математик".
Артур, Вы грамотно объясняете, но иногда говорите очень быстро, что можно упустить мысль!
Тем временем я смотрю на скорости 2х🥴 Да да, быстровато))
В TH-cam можно замедлять видео в пункте "Скорость"
Я иногда скорость больше делаю ,чтоб слушать . Но здесь не надо,да он бьістро Говорит
Нам бы помедленнее, ага:))
@@МарияМакшакова-в6э Ага :)
Начал, неожиданно для всех, заниматься науками, и начал задавать вопросы: "Что такое производная? Чем руководствовались при её "открытии" ", но так и не узнал ни от репетитора(уч. математики), ни от первых страниц (а там функция немного разбиралась) книги Шинтан'а Яу "Теория струн" что же это такое. Для меня, как интересующегося науками, важно понимать саму суть физич. явлений(как минимум представлять их), так и видеть и понимать матем. процессы. Видео однозначно ставлю лайк, и выражаю свою благодарность Артуру.
Меня всегда поражало как люди пытаются читать что-то действительно сложное, типа теории струн, не имея твёрдых знаний даже школьной программы.
А мне вот не очень понятно как можно заниматься хотя бы той же школьно базой, не зная зачем вообще нужна математика и физика... не зная к чему ведут эти скучные уроки, а они в том-то и дело, что скучные. Учителя не заинтересовывают, да и родители не дают никакой грамотности. Поэтому я сначала интересуюсь, а том изучаю, иначе это как-то глупо, делаю то не зная для чего...
Терпеть не могла физику, химию, математику и подобное из-за неумения учителями рассказывать предмет должным образом и связывая его с жизнью. Просто в воздухе все летало.
Никитос, поддерживаю. В школе никогда не понимал, нахрена я учился алгебре. Вот с геометрией проще, там всем понятно как посчитать площадь периметр объем и для чего применять. Как зная углы или только катет с углом найти длинны сторон треугольника или прочего объекта и это можно применить практически. Но то что делает интеграл производная и прочая чушь, в которой я как и ты пытаюсь самостоятельно разобраться, мне еще не ясно. В школе не говорили где применяется и как на практике. Я вот пошел на второе высшее и у меня выходит, что будут хвосты по высшей математике. Как раз будет время задалбывать препадов, чтоб они все досконально рассказывали, а самое главное показывали, как это все применять.
Теория струн - это про гитару или балалайку? А, как знания школьной программы помогают понять теорию струн? Связь в чём?
Один из самых потрясающих каналов на TH-cam, однозначно лайк!:)
Начинал смотреть Артура ещё с ранних видео по математике, прослезился. Спасибо за то, что подпитывал интерес юного школьника к математике, которую он не понимал, но считал интересной)
Артур Шарифов,хотелось бы высказать вам огромную благодарность,вы объясняете в 100 раз лучше чем учителя в школах.))
Ты только что объяснил мне то, чего наша математичка так и не смогла мне вдолбить энное количество лет назад. ))
МОЛОДЕЦ, быстро и ясно, все бы так не злоупотребляли временем зрителя
Артурос, ты красавчик! Хоть мне это уже и не понадобилось, но то как ты объясняешь, весьма зачётно! Респект аффтару))) продолжай исчё в том же духе)))
офигеть! столько лет долбили этой производной и я только сейчас узнал её действительный смысл!
Артур Потресающий урок по математ.Узбекистан.
Чувак, какой же ты красавчик! Благодарю! Наконец-то я расчехлил! Вот бы все такие преподы были как ты!
Нихуя не понял, но было интересно.
Зачем так сложно и путано? Если положение точки при её движении по числовой прямой задаётся функцией S = f(t), где t - время движения, то производная функции S - мгновенная скорость движения в момент времени t. По аналогии с этой моделью вообще говорят о том, что производная функции у = f(x) - скорость изменения функции в точке х. Вторая производная соотвественно определяет ускорение. Вот это и есть физический смысл. Физика , она всегда простая как хозяйственное мыло. Математики это великие люди, с удивительным абстрактным мышлением, но чтобы их понять нужен Дар Божий :)
@@Zed_s_Dead. Скорость изменения в точке, ты блть вчитайся в это. Это блть просто точка!
P.S. на самом деле производная-это функция ускорения графика. Мы принимаем её геометрический смысл за точку, потому-что дельта икс стремится к нулю и этим слагаемым можно пренебречь из-за чего и получаем точку. Но говорить про измение функции в точке x-мне кажется, это бред.
Ахахахха ага
неужели в школе так трудно нам было ВОТ ТАК объяснить?
+Мроо Мрод
А ты думаешь,что сейчас что-нибудь понял? Ведь этот парень,наверняка,
ничего нового по сравнению с твоей учительницей не сказал,он просто жонглирует "умными" фразами,но,скорее всего,сам не очень понимает
суть объясняемого.
Артур молодец я учусь а 9 классе а благодаря нем понял суть производной и первообразной! Думаю пойти к интегралам, а до этого я смотрел другие видео про производные и ничерта не понял! Так что Артур молодец! Лайк.
@@Leichtinn вот именно. Ничего этот паренек в видео не рассказал, просто как все в очередной раз пересказал правила, также бессмысленно как правила в шахматах, мол: " _если эта фигрузка здесь, то действуешь вот так_ ". Полная каша никому не нужная. Математика без прямого применения не математика.
Прекрасно знаю что такое производная, решил посмотреть пока ехал в электричке и... Хрень кароче. Куча не нужной информации. Хорошо, что я не учил это по его видео
@@KILLZONERUSSIA а как учили?)
Столько гневных комментов на своих учителей по математике и хоть бы один догадался в свое время, открыть учебник именно по физике, где вся физическая суть функций, формул, отношений и производных более чем разжевана.
spasibo za podskazku, sejchas pojdu otkryvatj
Ищите феймана тогда. лекции по физике
Действительно! Но... когда уже знаешь - то легче понимать где найти! Вот в чем весь фокус. Любая решенная задача кажется простой!
конечно, ведь в школах физику не преподают, и учебники никто не открывает
... и хоть бы один догадался в свое время открыть... // … вы очень многого хотите от обыкновенного среднестатистического ребенка-пятиклассника))... и потом дело не в просто "открыть", нужно еще осознавать, что и зачем ты, собственно, изучаешь?... для подростка без определенной мотивации и кураторства учителя, согласитесь, такое трудновато)...
Артур, ты молодец! Я нифига в математике не понимаю, но тебя все равно интересно слушать, ты очень умный ))) Желательно только говорить или чуть медленнее или делать паузы для переваривания информации у зрителя ;) Удачи тебе!!!
Артур, подача материала отличная! Повнимательнее пожалуйста с оговорками: ускорение это не вторая производная скорости, а вторая производная пути;) или первая производная скорости✌️ пожалуйста разбавляй материал ссылками на имена ученных и прикладным использованием знаний... К примеру в автомобилестроении, строительстве, аэродинамике, гидродинамике, биологии, астрономии...
СПАСИБО! Вы просто гениально объяснили, наконец-то все понятно!
Артур - мастер на все руки
Как же теперь стало все понятно!
спасибо, объяснил мне весь 10-11 класс за 8 минут, когда учителя даже за 2 года не смогут объяснить. вот задача, разбирайтесь сами как говорится
Физический смысл математических выражений - то что мне нужно!..... Парень, ты просто Бог!
Артур молодец я учусь а 9 классе а благодаря нем понял суть производной и первообразной! Думаю пойти к интегралам, а до этого я смотрел другие видео про производные и ничерта не понял! Так что Артур молодец! Лайк.
До меня всё никак не доходил смысл производной, хотя с математикой проблем особых нет, И только сейчас ! Только сейчас на меня будто снизошло озарение . Я рада что наткнулась на этот видео урок!!!! =)
Наконец-то я понял, что там лет десять назад в школе проходил... Я тогда сколько не пытался понять, что они там считают, ни в какую не шло... У меня сейчас гуманитарное образование и недавно я начал понимать, что химия это офигенно, а теперь вот нашел прям ответ на вопрос детства из области математики)) Вот так бы объясняли, ЧТО я считаю, что эти формулы значат... Кажется, в школе, как правило, один хороший преподаватель и что он ведет - ту область знания ученики и будут знать, туда и пойдут, а остальное им будет казаться "не их"... Ебаная наше образование, даже не "система", а вся начинка целиком))) В 30 лет начинаешь чувствовать, ощущать плоды её работы и охуеваешь. Артуру Шарифову глубочайший респект)
Чувак, чувак, давай ещё видеоуроки делай пожалст, но что нибудь по сложнее, на уровне вузов. что нибудь интересное!!! А то егэ только для школьников =)
Артур, Вы молодец. Все круто... Спасибо за прекрасное объяснение. Скорость изменения скорости... Хорошо подчеркнуто. Короче, счёт насчёт счета...😄 напомнило фильм Блеф.
Наконец-то стало ясно . У меня диплом электроники и электричества ,а до просмотра этого видео так и не знала , что за фигня эта производная .Зашла в Википедию ,почитала и вообще испугалась ...Спасибо Артур !!!
Просто спасибо .. вот от души душевно в душу )))
эх, жаль что в мое время не было ни интернета , ни подобных видео. учиться было бы намного проще. Чувак просто красавец!
Давай сначала про интеграл, оч круто! Но такие видео сверх крутые и полезные, реально крутой контент для нормальный пацанов и дивчат :D
Артур, еще снимаешь подобные видео? Если да, то сними о пределе функции, учила фиг знает когда назад, а понять до сих пор не могу.
Интересно было бы послушать как изобрели производную и почему именно такая формула (дельта y/детальта x)
вот тоже не понял - заявляет, что это отношение и все - верить на слово? Но почему деление?и зачем оно на практике - где применить то, кроме школы?
Blagodaryu , Artur :3 ..
za to chto pomogaesh nam , prostym smertnym
Хорошее видео, я запустил подобные с анимацией
Если ты смотришь это видео значит тебе будет интересно на моем канале
Тот случай, когда в универе не спал на лекциях по матаналу и внимательно слушал препода и поэтому прекрасно понял всё в этом видео! :)
Какой универ , это класс 10
Все равно не понятно, что меняется какая скорость, пример какой то нужен. зачем мне искать эти дельты
Очень интересно. Реально. Но не успеваю следить за мыслью.
Спасибо за видео.Побольше бы теории,очень интересно!Желаю успехов.
Артур вот я тебя сейчас смотрю перед ЕГЭ, и понимаю, что фашисты из моей страны вас бомбят, а ты мне с ЕГЭ помог . Спасибо...
Я обожаю тебя, твоя помощь безгранична!!!
кстати!
производная х0 у всяких гипербол и тангенсов при х0, стремящемся к невозможному значению для этих функций (0, 45градусов), будет ооооочень большой.
Спасибо. Давайте я объясню что я понял, ибо есть такая техника, где если ты объясняешь изученное, то понимаешь глубже тему.
И так:
Производное это мгновенный slope, где за разницу в х, которая стремится к нулю, мы получаем мгновенную скорость ( не факт).
То есть благодаря производному мы можем определить конкретную величину в variable который стремится к нулю.
Извините за англицизм, ибо учился на нем
Спасибо, Артур! Мне очень интересно...
досмотрел до 3:50, вопрос - сначала лучше изучить что такое предел, или сначала как раз таки изучать производные?
😀👍👍👍И здесь понять помогает Физика!
Артур, за крайне замечательное дело взялся! В этой стране дичайшая нехватка нормальных преподавателей, так что подобные начинания - чрезвычайно благое занятие.
Успехов!
P.S.: есть ли планы на подобное, но уже для вышки? Всякие матрицы там, тервер, матан...
Lex Darlog (SG) в этой стране нехватка трудолюбивых людей, существует n-ое количество книг , где описано что такое производная, ее физ. и геом. смысл, просто либо никто не хочет это искать и узнавать, либо не знает где это искать.
А помимо книг - есть ещё такие понятия, как "зона ближайшего развития" и "дидактика". Однако большинство преподов, работающих в гос. оброзовательных учреждениях - либо об этих понятиях ни сном ни духом, либо просто основательно кладут на них болт.
Так что:
1. Ты можешь быть сколь угодно трудолюбивым, но если материал тебе преподают через жопу, то пытаться въехать самостоятельно - всё равно что бороться с ветряными мельницами.
2. многие учебники - словно специально написаны таким языком, чтоб его даже при всём желании было невозможно понять.
3. Покажи, пожалуйста: в чём именно твой коммент противоречит моему первому. Ты не согласен с тем, что Артур прекрасно излагает материал и в целом занимается благим делом - несёт знания в массы?
я теряю сознание. это крутейший видос! создавай телепорт...
Артур, займись разбором задач ЕГЭ(математика, профиль) пожалуйста
Прям по заданиям, я думаю будет актуально
Ты очень хорошо объясняешь, только давай как можно подробнее)
Тема проста и чудесно объяснена, большое спасибо
Чудесно!Энергетика завораживает
Вау... Прям даже не знаю, что скажать: так быстро и экспрессивно превращать непонятные вещи в понятные. Кто-то нашел свое призвание)
Спасибо, Артур. Очень хорошо и понятно.
Что-то не очень понятно объяснено. Точнее, смысл производной так и остался неясным. Почему мы берем именно скорость объекта? И зачем мы находим функцию на мизерном расстоянии от ее предыдущего значения... Хз, в голове не уложилось.
Потому что мы ищем "мгновенную скорость" скорость в определённой точке т.е. на бесконечно малом участке на таком малом, что хотя скорость и меняется постоянно, но на отрезке стремящемся к нулю изменение скорости тоже стремиться к нулю и её значение в начале этого участка отличается от скорости в конце участка на бесконечно малую величину т.е. может рассматриваться как постоянная, а в следующей точке или точнее на следующем бесконечно малом участке она тоже постоянна но имеет уже другое значение - другая мгновенная скорость. Скорость изменяющаяся со временем это просто самый наглядный пример который большинство может себе легко представить и вторая производная - ускорение тож всем знакома. Можно рассмотреть процес изменения давления газа в замкнутом объёме при постаянном равномерном или изменяющемся подводе энергии. Или тоже самое для находящихся в замкнутом объёме 2-х фаз: жидкости и газа когда с ростом температуры ускоряется переход жидкости в газ - "кипение" но при этом растёт давление что замедляет "кипение" но это не самый пдходящий пример для объяснения смысла производной.
@@ppjsdsniru2370 не объяснил где же все таки применяются эти все производные??))
@@KivanV @Иван К для рассчёта скорости и дальности полёта ракеты т.е.тела с переменной массой и колл. топлива, для рассчёта тормозного пути, сгорания топлива в цилиндре мотора, распространения взрыва, сложных многокомпонентных влияющих друг на друга процессов, везде где в системе происходят одновременно несколько процессов каждый из которых влияет на другой, когда не возможно получить конечный результат простым сложением формул описывающих каждый процесс по отдельности. Например в момент выстрела газы расширяются по известной относительно простой формуле. но пока весь порох сгорит пуля пройдёт уже какое то расстояние, описываемое другой формулой, значит в начале сгорания объём за пулей будет меньше чем в конце сгорания и изменяться этот объём будет не равномерно т.к. пуля будет ускоряться и ускорение тоже будет меняться под действием увеличивающейся силы давления. Короче скорость пули в какой то искомый момент зависит от ускорения, ускорение от силы давления, сила давления от объёма, объём от положения пули, положение пули от скорости.... и опять всё сначала по кругу. Вот возми тут и просто сложи всё вместе. Когда весь порох сгорел то дальше расширяются уже просто разогретые газы по другому закону (формуле) При этом ещё чем быстрее пуля тем сильнее тормозящие силы трения. Значит в начале они ничтожны а в конце максимальны. Чем дальше пуля прошла в стволе тем слабее давление и следовательно ускоряющая сила но тем сильнее торможение значит в какой то точке они станут равны и дальше пуля будет только тормозиться и опять же тем слабее чем меньше её скорость. В этом месте ствол должен закончиться но именно в этом месте что бы максимально использовать силу заряда. кроме того при расширении газа падает температура тоже по своему закону а значит это тоже снижает давление. Температура газа снижается и за счёт нагревания ствола этим газом. А ствол тоже постоянно отдаёт энергию окружающему воздуху и всё это тоже одновременно и по своим законам-формулам. От нагревания ствол расширяется - и опять же увеличивается объём за пулей. При последующих выстрелах ствол уже обладает другой начальной температурой и всё более и более высокой. Отсюда и рассчётный предел максимального числа эфективных выстрелов. Если нарисовать по отдельности все графики этих формул получиться запутанный клубок из линий. И если провести вертикальную линию что бы узнать какое же значение имеют все эти параметры в определённой точке ствола, то это ни чего не даст т.к все они на самом деле влияют друг на друга и в действительности будут иметь совсем другой вид чем по отдельности. Для этого и нужны производные функций по опр. параметрам. Вот по этому то расход топлива в ДВС упал с десятков литров у первых моделей до нескольких сот грам у современных экспериментальных моторов, а автомат Калашникова и наши ракетные двигатели лучшие в мире.
А если проще то мы все пользуемся этими производными даже и не подозревая об этом. Вспомните задачу древних философов софистов. Эсхил ни когда не догонит черепаху потому, что пока он пробежит расстояние до того места где она была в момент старта то она хоть чуть чуть но пропалзёт вперёд и ему нужно будет пробежать и это расстояние, а она за это время проползёт ещё хоть пару миллиметров и на эти миллиметры ему снова нужно пусть ничтожно малое но время и т.д. до бесконечности и не важно как близко Эсхил к черепахе, догнать её он не сможет. С калькулятором многократно складывая эти расстояния (100+10+1+0,1 +0,01+0.001+0,0001....) мы можем досчитаться до кокого то значения которое будет настолько близко к конечному результату, что практически приближение не будет иметь значения. но теоретичесеи оперируя только расстоянием мы ни когда не получим абсолютный результат. А если вспомнить что расстояние зто производная от скорости. Скорость Эсхила 10 чего то там за чего то там (км в час, м в сек. парсеков в световой год), а черепахи 1 значит они сближаются со скоростью 9 значит расстояние на старте 9 разделить на скорость 9 получим 1(хотя может получиться тоже иррациональное число, это я просто так красиво подобрал цифры, но затраты времени минимальны) Также с калькулятором можно просчитать и пулю и любой процесс, но я даже и приблизительно не могу назвать колличество миллионов лет которые на это понадобятся если ТЕРРА-СУПЕР-ПУПЕР-байтные компьютеры тратят на некоторые рассчёты часы и дни
@@ppjsdsniru2370 Твое объяснение шикарно, кинь свой вк, хочется пообщаться
@@ppjsdsniru2370 чтож, жаль, спасибо
Спасибо, очень полезное видео! До следующих уроков!!!
Спасибо, никогда производную и интеграл толком не понимал
Ну наконец-то наш учитель прислал твой урок)
Престарелый гуманитарий готовится к вступительному экзамену на экономический факультет:)) волосы дыбом встают:)) вы супер!!
Чувак , реально гений
идиот!ОН! полный! без!МОЗГОВ!!!!
- "..близки к ...НУЛЮ!!!..." - а рисует! КРИВУЮ!!!!! (вместо одной! точки)
Надо сварить кофе покрепче и пересмотреть ещё раз 🤯🧐
Все круто )
Монтаж крутой)
Супер супер круто )
Спасиб)
ещё надо отметить операторскую работу.
Внимал с удовольствием)
вот это эмоции! захватывающий рассказ )
Артур, может рассмотришь задачу о брахистохроне? Через неё можно связать классическую задачу о скатывающемся теле по наклонной поверхности с интегралом (т.к. в школе, да и во многих ВУЗах всё это подаётся отдельно, без связи одного с другим)
Ждем разбор второй части!
Нормально, меня как то друг спросил че такое
я ему сказал кинь камушек, он график тебе даст, и в каждой точке из этого графика камень будет иметь свою скорость. а далее уже не сложно догадаться как ее считать
Спасибо огромноее)))Всё ясно и понятно объяснил.Восхищаюсь тобой!
Красавчег! Так держать! Все очень понятно)
Автор, когда делаешь выводы, типа "... предел такого отношения называется производной", делай паузы, - чтобы было время осмыслить инфу, - у всех разный темперамент. В такие моменты желательно визуализировать сказанное увеличенным изображением на экране, поставив паузу.
Мужик ты красавчик! Очень круто объясняешь!
Ох, дружище! Сказать, что помогло - ничего не сказать. Понимал что такое скорость изменения функции, но вот ускорение было загадкой.
Обои зачёт, прям как функции!
Спасибо, продолжай делать уроки, помогаешь!
В физическом смысле понятно почему производная - это скорость, ибо процесс во времени. Я учусь на экономическом и мне нужно использовать производную в экономических расчетах, например, функция зависимости спроса от цены: спрос y и цена х. В данном случае о времени речи не идет, то есть мы просто строим предположение, что если цена будет такой-то, то спрос будет таким-то. Так вот вопрос: можно ли в данном случае производную рассматривать как РЕЗУЛЬТАТИВНОСТЬ прироста спроса в конкретной точке цены, ведь скорость - это вроде тоже как результат пройденного пути в конкретной точке времени? И если я, например, ищу точку экстремума (максимальную), то это я получается найду такую точку цены, которая имеет наибольший результат спроса ?
Та я знаю, что такое эластичность спроса. Просто я пытаюсь понять смысл всех терминов математического анализа, чтобы не бездумно их использовать. Это я просто привела пример какой-нибудь функции.
Но эластичность, я так понимаю, это просто выражение в относительных величинах, а производная - в абсолютных.
"Рассчитать производную" Х от У можно если их взаимозависимость описывается математической функцией. Насколько я себе представляю спрос не зависит от цены не по параболе не по гиперболе ни по какй бы то нибыло иной строгой математической функции где каждому значению из области нахождения соответствует значение в области определения. Спрос, кроме цены, зависит от доходов, региона, времени года, погоды .......... отдалённости следующих выборов. Это всё не возможно описать классической алгеброй, для этого есть теория больших чисел, мат статистика........
Класс. Молодец. Супер. Все классно.
Ты лучший! Спасибо большое!
Спасибо огромное! Все очень круто, а главное понятно
Артур ты лучший!
И все же не очень понятно для чего нужна производная. Если производная - это скорость изменения функции в ЭТОЙ (какой-то конкретной) точке, то ее нельзя подсчитать, так как в конкретной точке скорость не изменяется. Скорость может изменяться между двумя точками, что и было показано в видео. И даже если мы посчитаем эти две точки как одну (из-за бесконечно малого расстояния между ними), то что нам это дает? Я так понимаю, что задача в том, чтобы узнать правило, по которому функция изменяет свое значение (чтобы зная значение функции не вычислять значение аргумента, из которого был получен результат, а сразу вычислить следующее значение). Но проблема в том, что функции бывают разные, и ведут себя по разному. Линейная функция в любой точке приростает на константу (поэтому можно просто прибавить ее к значению функции в какой-то точке, чтобы получить следующее), тогда как квадратичная, к примеру, такой константы не имеет. Но почему просто не вычислить значение функции по аргументу? Зачем прибегать ко всем этим пределам, чтобы узнать скорость изменения функции, которая фактически будет вычислена точько для данной точки? Или я чего-то не понимаю?
Ну представте что вам нужно разогнать ракету до определённой скорости причём она должна достич этой скорости в определённой точке. Масса ракеты всё время уменьшается значит при постоянной тяге ускорение увеличивается. Получается что скорость роста ускорения это уже третъя производная по времени, а если масса ракеты снижается не равномерно а всё быстрее и быстрее то ускорение растёт тоже не равномерно а всё быстрее и быстрее т.е. ускорение ускоряется с ускорением, то это уже 4-я производная.
Утверждение, что скорость в конкретной точке не меняется ошибочно. Точка понятие математическое это просто положение - позиция постоянно движущегося тела в какой то момент времени. Тело в ней не замирает, а затем изменив скорость мгновенно "прыгает" в другую точку. Представте, что ускорение постоянно и равно 2 (V`=2x), т.е. движение тела описывается уравнением у=х² его график - парабола. Парабола не имеет прямых участков т.е. касательная в любой её точке не имеет другой паралельной себе касательной все они имеют различный угол наклона, а значит соответствуют разным скоростям движения в каждой точке даже в самых "близких" друг к другу "соседних" точках отдалённых друг от друга на бесконечно малое расстояние дельта касательные будут отличаться на бесконечно малый угол.
Смотрел какое-то другое нудное видое ( что-то про производные ), увидео снизу ваше видео, Артур.. Сразу тапнул на него😆 и послал ( про себя ) предыдущее!
все очень понятно обьясняашь) если ы в школе работаешь повезло тем, у кого ты ведешь уроки))
Подобно ли бесконечно малое графику?
1:34 ошибка. Ты перепутал X1 и X0 местами! Там получается отрицательное значение, которое по примеру быть не может.
Артур, спасибо, но я не разглядела, что ты писал на доске, ведь это дополнение к тому что ты говорил. Конечно, ты объясняешь чётко, но быстро говоришь, это тоже проблема, для тех кто слаб в математике.
Вау, спасибо большое!!!!!!! Очень интересно))
Спасибо тебе я именно это и хотел узнать жду следующих уроков
Круто, буду жену учить математике по твоим урокам) А то вроде умная женщина, а в математику никак не может)
Можно было бы употребить термин "касательная" и тут же на графике показать чему равна производная функции прям с размерностью... и чему равна производная производной...
Какие волосы :00
Какая внешка ❤❤❤
очень интересно! люблю этот канал) и еще физику от Побединского
Значит так!) Кто первый скажет, что происходит, тот меня и завоюет)
Просматриваю видосы в двух кратном замедление - уморительно
Ага) поржала.
Мне бы так учить детей...(не замедленно, конечно )
Спасибо большое:) Артур, скажи, есть ли ещё какие-то видео по теме "Производная". Спасибо)
Как он эмоционально пытался объяснить что окрестность бесконечно мала =)
Спасибо, мне всегда лучше "заходили" графические объяснения.
Очень полезный стиль изложения
Речь шла об односторонней производной, а не в общем случае. Неглубокие познания автора: Повторюша - дядя Хрюша :)
Браво!
Антошка подкажи с чего начать решение. В треуголн вписана окружность, которая возле углов отсекает вогнут сферическ треугольн площадями 9 ,16 и 25 кв.ед. Требуетсч найти площадь окружнлсти