00:25 Зачем мы проходим производные 01:05 Что такое производная (без сложных определений) 01:20 Мгновенная производная 01:50 Примеры применения производных. Рита и итальянский язык 04:06 Основное применение - задачи на максимизацию-минимизацию чего-то 04:46 Пример от друга кондитера. Как найти наибольшую площадь 06:58 Экономическая задача. Максимизировать прибыль 09:04 Производные для прогнозирования численности населения. Дифференциальные уравнения
Только начал смотреть но не понимаю) за 2 недели 3 переатестации на работе(ТБ,ППБ,ПТЭ,ПУЭ и т.д) информация не усваивается читаю и мозг не воспринимает информацию, но через месяц сессия студент ИВТ и там эта прикладная математика...зачем мне это в жизни, через не могу и нехочу...устал
Хм. Закономерно сделать ролик про интегрирование, обратную функцию дифференцирования. А в чём разница между понятиями Дифференцирование и производная? Ну и в чём разница между собственно Интегрированием и первообразной? _ Ну и круто затронуть анализ Фурье. Как по мне одна из самых важных вещей в всём анализе.
да интеграл-то понятно - это просто площадь фигуры, у которой сторона не прямая, а витьевая:) и если известно, по какой функции она кривится - вот тогда интеграл и поможет) а вот как составлять эти функции было бы интересно, да
Jil Mirgin и про площадь фигуры и линию её края, на самом деле если есть набор точек то по ним можно привести приближение(сделать интерполяцию) и этот многочлен будет с определённой точностью повторять ту линию, или например использовать кубический сплайн(грубо говоря множество многочленов которые перетекают друг в друга)
@@ant1k-1 10 класс то просто конечно, но где и в каких сферах его нужно применять это вопрос поинтересней. К примеру в через логарифматор вычитание и экспоненцирование устроена операция деления
0:33 "Зачем вообще нужны эти производные" Оу, это я знаю, этот вопрос я задавал, и точно знаю, что правильный ответ - "Пиши давай!". Ну не будет же преподаватель врать, правильно?))
Сколько не учил производные, сколько не мучил я учителей и преподавателей. Но только благодаря этому ролику я понял их смысл. Одно дело, когда шаблонно считаешь по зазубренному алгоритму и совсем другое, когда понимаешь смысл того, что решаешь. Просто, доступно, понятно. Спасибо. Продолжай в том же духе. "Зачем нужны эти тригонометрические функции"
Ну можно сказать, что они и сами не знают где это может использоваться, т.к. они стали учителями, у которых практически нигде, кроме школы, не пригодились эти знания, тип у них нет смысла этого спрашивать, эффективнее всего будет спросить об этом у людей из других сфер пригодилось ли им это, а в детстве нам всем казалось, что учителя все знают, но почему то не рассказывают, из-за чего нам казалось, что это нигде не пригодиться...
P.S. они просто не могли об этом знать, так как инета раньше не было, загуглить негде. Я после того коммента немного задумался, но ведь не будь инета, я бы сейчас не узнал бы где могут пригодится производные, точнее как они работают в других отраслях и сферах, сложно даже представить где они еще применяются. А когда инета еще не было, то и о таких легких примерах не узнал бы...
Встречает мастер своего преподавателя по вышке лет через восемь после окончания вуза, разговорились, вспомнили время былое. Профессор спрашивает: - Вот я вам читал три года высшую математику, скажи, в жизни тебе мои знания когда-нибудь пригодились? Студент, подумав: - А ведь был один случай. - Очень интересно, расскажите, я его буду на лекциях рассказывать, что высшая математика не такая абстрактная наука и в жизни бывает нужна. - Шел я как-то по улице, и мне шляпу ветром в лужу сдуло. Так я взял кусок проволоки, загнул его в форме интеграла и шляпу достал!
Что такое большая пьянка? Это такая пьянка у которой вторая производная не равна нулю. А что такое производная от пьянки? Это пьянка на выручку от сданных бутылок.
@@ИванФомин-к3в смотря что считать "математикой", например в мозге происходит непрерывный математический расчет где каждый нейрон складывает и умножает... если нейроны этого не делают значит мозг мертв...
@@xyzw777 Это интерпретация, на самом деле нейроны ничего не считают, там происходят процессы другого сорта. Это всё равно что сказать, что водород считает сколько молекул кислорода ему присоединить, фигура речи так сказать.
Простыми словами: функция, которая содержит не только x и функцию от него, но и производные от функции. Где применяется? Везде где есть системы, в которых важно учитывать скорость изменения компонентов (в химии для описания реакций, в физике для описания колебаний или распространения волн или движения планет, в экономике, статистике и т.д., в общем одна из самых полезных вещей, которая математика могла подарить миру). Однако там мало что можно рассказать, если человек не знает смысл интегрирования и дифференцирования.
@@skalerok Где это можно узнать лучше всего - книга или сайт? А то я решаю дифуры просто по факту, а не понимаю как строятся эти уравнения для физических процессов, особенно с частными производными.
@@Mihail_Duymin подробно и понятно - всем не интересно). Поэтому отдельно живёт научпоп, а отдельно каналы с подробным разбором. Если нужно подробно и понятно, можно подписаться на данный канал - soul solution (физика, математика), а так же рекомендую гет э класс \ get a class (отдельно каналы по физике и математике модулями \ интересными вопросами); елена савченко (егэ и геометрия по математике).
@@Mihail_Duyminподробно и понятно за отдельную плату))) в моем случае дело не в том что мне жалко, а в том что злит от группы к группе что несколько человек реально хотят ее учить,остальным все равно. Про других математиков не могу сказать.
ВОТ ОГРОМНОЕ ОГРОМНОЕ СПАСИБО!! .. ЖАЛЬ ЧТО ЭТО НЕ ОБЪЯСНЯЮТ ДЕТЯМ, ЧТО ВАМ ЭТО НУЖНО!!!! ребенов в 13-15 лет не знает кем будет работать, что его заинтересует. а любые знания ВСЕГДА РАСШИРЯЮТ ГОРИЗОНТЫ ВОЗМОЖНОСТЕЙ!!! ......родители хотите дать ребенку больше возможностей - дайте больше базовых знаний и умение учиться!!!!!!!!
Если ребёнок в будущем будет заниматься тем что действительно ему интересно он пренепременно разгрызёт эти школьные математические понятия. Оценка моих математических навыков в школе вела к тому что я скорее стану историком, но всё же я технический специалист и работаю с математикой очень тесно в сфере компьютерных наук.)
Было бы очень круто увидеть в таком формате видео о диференциалах, раскрытие темы производных первого и второго порядка, а так же примеры применения двойных интегралов. P.S. спасибо за пример с моделью Лотки-Вольтерры))
Электротехника: активная, реактивная энергия, индуктивность, емкость... Там, где есть переменный ток и(или) переходные процессы придется решать эти задачи. Комплексные числа прекрасно описывают физику процессов.
Да-да-да, очень интересны ролики такого толка: зачем нам нужны основные элементы вышки. Очень интересно. О чем-то никогда не говорили ни в школе, ни в институтах. Что-то уже забылось сто раз. Интегралы, первообразные, синусы-косинусы - очень хочется услышать в таком подробном описании. Прямо плейлист хочется с названием "Как нам могут пригодиться ". И большое спасибо за ликбез!
Для тех, кто не понял про торт: Автор таки решил делать торт прямоугольным, хотя у фигуры ближе к кругу площадь априори больше, но ок. Задача: Знаем периметр прямоугольника. Какая длина и ширина должна быть, чтобы его площадь была максимальной? Длину вафелек не учитываем, их ломать не будем, просто примем за единицу. Тогда P = 36, x - длина одной из сторон прямоугольника. Длина второй стороны: P=2(x+y)= 36, y= 36/2-x = 18-x. Тогда площадь равна S = x*(18-x) = 18x -x2. Получили функцию, где по оси абсцисс одна из длин прямоугольника - x, по оси ординат - величина площади (Это перевернутая парабола) Максимальный экстремум функции - искомая величина. А экстремум ф-и - это когда производная равна 0 ( хотя это недостаточное условие, но т.к. это просто парабола, то можно и забить) Высчитываем производную, приравниваем ее к 0 и считаем x
Большое спасибо за производные. Было бы здорово услышать от Вас про число "е". Про его связь с физическими процессами. И, если возможно, формула Эйлера. Для понимания электротехники она очень важна.
Мне кажется, было бы интересно обсудить математическое моделирование в целом и разные интересные ситуации с применением математических моделей! Спасибо за вашу работу!
Перед просмотром выделил 4 ответа на вопрос, заданный в тексте. Производные нужны для : 1. Аппроксимации функций. 2. Задач оптимизации. 3. Решения дифуров. 4. Понимания интегрирования. Был приятно удивлён, что автор почти все эти вопросы задел. Автор молодец.
Отличное повествование, спасибо! Интересна была бы любая выше предложенная тема. Но идеальный вариант, это обзор всей школьной и вузовской математики с точки зрения практического применения. Спасибо ещё раз!
Тоже долго не мог их понять (хотя и сейчас в них профан), но однажды увидел такой рисунок: Крючок интеграла, внизу написано "рождение", над ним написано "смерть", а посередине "жизнь". То есть, как я понял, интеграл - определяет собой какой-то изменяющийся процесс с течением времени.
Вот именно! В школе не любила математику, потому что учителя плохо объясняли математические понятия, а, главное, их практическое применение. Оказывается, что математика удивительно интересная наука. Чем дальше, тем больше убеждаюсь, что математика - царица наук! Спасибо за отличное объяснение!
Такая формулировка и не даёт понять. Она присуща всем людям с такой проблемой. Все объяснения в математике наслаиваются друг на друга. Если Вы не поняли 1 звено, то остальные не поймёте точно. Нельзя надеяться, что мол это не понял, дальше по ходу пойму. Так не работает. Так что Вы не могли не понять ничего. Вы не поняли что-то одно в начале. На этом моменте надо остановиться, а не идти дальше. На чем конкретно было это самое первое непонимание?
@@6144100ну это само собой, но вот я не понимаю примера с тортом. Нужно сделать огородку из вафелек так, чтобы торт был максимальной площади. Что это за *****, простите?
Да на самом деле автор - бездарь. Вот из-за таких, как он дети в школе элементарных вещей не понимают. Тот же пример с тортом с вафлями. Я вообще не понял, что там надо было ограждать и от чего. Вместо того, чтобы упростить, он ещё больше нагоняет жути. Хотя суть производной не такая уж и сложная. Вполне возможно за 5 минут доходчиво объяснить.
@@Артем-м9у3э а еще еще лучше вопрос практическое применение решения нерешаемых интегралов в инжинерном проектировани ( чего угодно, там гту двс, ветро генераторов или электроцепей , это уже не суть) даю ответ зарание все делается практически по наитию и математика там нужна меньше чем статистика
да это опять таки тема интересна будет нам математикам а остальным ребятам и девчатам интереса будет как тех кто пишет в комментах с юмором мягко намекая что она нафиг не нужна...тут хз что нужно. в том то и дело.
Нет. Если говорить просто об изменении безотносительно его направления, то производная всегда будет положительная, т.е. она будет показывать факт наличия изменения и выражать его количественно. Так работает спидометр на машине: не важно, едет она вперёд или назад, спидометр всегда показывает только положительную скорость. А когда мы говорим именно о росте функции, то убывание - это уже отрицательный рост, а не просто изменение на какое-то значение не важно в какую сторону, и производная тоже будет отрицательной.
@@deleteddeleted4120 Да. Ты чё наглый такой вылез многотекста кинул? Человек по факту всё написал. Ты приплёл удобную для себя СО и начал что-то перечить. Относительно любой точки пространства можно сделать совершенно разные выводы. Но у функции есть конкретное понятие нуля функции. Совершенно аналогичным образом дела обстоят с производными. Вот где он ошибся конкретно ты скажи?
Это гениальная вещь, которую я по-настоящему прочувствовал в университете. Математический аппарат термодинамики построен на применении аппарата математического анализа. А именно те самые производные в частности. И какое было удовольствие понимать, что математика описывает процессы в системе. Что при бесконечно малом изменении одного параметра системы наблюдается бесконечно малое изменение другого (или же отклик системы). Определение производной по Лейбницу очень важно. И, конечно, же химическая кинетика. Изменение концентрации во времени. Это базис, с чего начинается построение этого раздела. Спасибо, что упомянули. Сам с этим сталкивался. Без производной невозможно понять и описать наше мироздание. Школьники, задающие вопрос "А зачем мне это надо?", не понимают всего величия. Да хотя бы для общего развития. Ты живешь в этом мире и должен базово понимать, как он описывается
пока ты говоришь "должен" "обязан" и находишь оправдания своим действиям, маленькие дети будут наплевательски относиться ко всем вокруг, потому что именно ты навязываешь свой бред и мнение которое никому не интересно кроме тебя и подобных тебе. тебе - наплевать на них им - наплевать на тебя отсюда рождается хаос и разрушение, из за человеческого снобизма, эгоизма и остальных приземленных черт присущих существам вроде тебя. я бы тебе разъяснил за жизнь на земле без оскорблений, но ты не поймешь и не вывезешь. удачи в развитии кусок кхм
Ну дело в том что не всем школьникам в их 14 лет упали твои термодинамики лол, они во-первых сами ещё до конца не знают кем хотят быть, во-вторых в подавляющем большинстве случаев нигде кроме школы не учатся и не готовы сожрать добровольно и вдумчиво тонны материалов чтобы эту термодинамику понимать. Им может быть интересна музыка, история, философия, программирование, прикладная физика, биология, что угодно ещё помимо вот того что ты рассказал. Я к слову тоже много чего из математики понял уже на практике когда писал программный код, но это скорее элемент визуализации, когда ты понимаешь что ты написал сам и видишь результат на экране, можешь это повращать, "пощупать" так сказать. Когда ты ребёнку на листе бумаги рисуешь какую-то линию и пишешь там "эф от икс" он нихрена не поймёт и будет прав.))
@@stevr_lich ты кукухой поехалреально.. хз как сейчас а производные я лично учил в школе.. в тех вузе я тож начинал учиться и таки не закончил его.. и там математика начиналась с пределов.. котрые мы чутка тоже в школе затрагивали... а интригалы уже после были... матан это вообще другое .. чему сейчас в школах учат я хз... видимо - писать коменты с айфонов.. прогресс как никак
не спорю, в школе учат а в ВУЗе переучивают, чтобы люди наконец поняли если ты учился - ты должен знать, что производная выражается через предел например. а пределы в школе не учат а судя по твоей грамотности, особенно в предыдущем коменте - ты даже школу не окончил. и учился в запердяйловске, где научился только куковать и материться.
Вам спасибо огромное! А я всегда знал, что в школьном образовании не хватает того, что детям не объясняют и не показывают то, для чего и зачем они что-то учат и самое главное как это можно использовать в жизни. В итоге я знаю что есть "молоток", но что им можно "забивать гвозди" я узнаю намного позже и уже тогда, когда мне это будет не нужно!
Георгий, спасибо за Ваш труд! Мои пожелания: математика применительно к автоматическому регулированию, например, пид регулятор, передаточная функция системы, нули и полюса, преобразование Лапласа. У меня сейчас стоит задача написать программу защиты электродвигателя от перегрева. Тепловая модель электродвигателя - дифференциальное уравнение, это все понятно. Но как применить эту модель на практике - неясно. Два института за плечами не помогли. Все это наверно будет неинтересно большому кругу людей, но может вы сделаете отдельный плейлист для специалистов, которые занимаются моделированием, программированием, автоматикой и т. д.
Георгий, классно! Наконец-то понял смысл производной, спасибо! Было бы интересно посмотреть разобр по такой же схеме понятия логарифма. Если такая ситуация возможна, то сделайте, пожалуйста)?
Спасибо за видео! Как на счёт ролика о статистике? Параметрические методы, непараметрические, коэффициент Стъюдента, среднее значение, медиана, мода и т. д. Конечно, я знаю, зачем мы это обсуждали на первом курсе, но многие не понимают)
Спасибо огромное.В школе математику терпеть не мог и еле 3 получал, но когда пошел в вуз то пришлось понять ее и полюбить) Теперь когда натыкаюсь на такие видео - с удовольствием смотрю как что то развлекательное) Кстати да, интегралы классно бы было еще, а после них использование интегралов в теории вероятности
У нас препод пример так любила говорить "очевидно из _ следует _ " и пошла дальше рассказывать. А потом на экзамене один вызубрил и повторяет "очевидно из _ следует _", а она ему: "Это мне очевидно, а вы докажите" (:
Единственное видео, после которого я понял с чем едят производные. БОЛЬШОЕ СПАСИБО!!! Было бы интересно понять и интегралы, и логарифмы, и т.д. - с чем их едят. Особенно как они могут соприкасаться с экономикой. Было бы полезно узнать какие функции высшей математики могут быть применимы в, например, азартных играть, например, в рулетке. Где есть скажем определенный заданный диапазон чисел, но нет определенности в какой последовательности они могут выпасть.
Вы большой молодец! Это правильный подход к объяснению производных! Недавно читала план преподавания математики в спо: сначала производная, потом пределы, потом последовательности... Атас! Где логика, в чем смысл?! 🤦 Очень многое зависит от учителя! Удачи вам!!!
могу вкратце) предел сверху - потолок. снизу - пол. слева - левая стена, справа - правая :) ну тип мы бесконечно близко приближаемся к их центру с уменьшением шага (чтобы не пропустить \ не перешагнуть этот центр).
Нормальный математик объясняет как человек. В школе и институте эти математики со своим чувством превосходства над остальным человечеством отбили весь интерес к предмету. А оказалось что я не такой уж и тупой в точных науках. Сейчас нагоняю через таких как ты, спасибо)
Поддерживаю, ряды Фурье одно из самых востребованных в практике математических изобретений, и применяются даже в таких областях о которых я себе даже не представлял.
матрицы нужны, к примеру,чтобы сравнивать массивы данных и находить в них зависимости и закономерности, к примеру в продуктовом ритейле могут анализировать влияние освещенности или температуры в торговом зале на продажи какого - то товара, также операции с матрицами происходят во время обработки данных видеокартой для того, чтобы мы с вами могли поиграть в компьютерный игры=) и так далее)
всегда меня мучили эти вопросы, и в школе , и в вузе- как конткретно и где применяются всякие формулы(кроме простых бытовых примеров), а училась на отлично и математику любила
24 типов различных документов для трудоустройства в школу, 1 прокурорская проверка в месяц, 1 открытый урок и еще множество множеств всяких проверок в течении первой недели работы за 25000 в месяц в любом крупном городе страны - берем 25 рабочих дней - очевидно что все знают что это за хрени))) иными словами поясняю - 25000 делим на 25 рабочих дней учителя в месяц равно = 1000 рублей в день. Рабочий день учителя это где то для примера возьмем 6 уроков переводим на количество пар = получаем три пары. Три пары это три раза по 1,5 часа иными словами умножаем 3 на 1,5 = 4,5 часа без учета всех перемен. Теперь на дорогу нужна денюшка?нужна. На еду нужна денюшка? нужна. не у всех жены готовят. даже у нас математиков. 100 руб на дорогу, 200 округленно на еду и это в крупном городе. Итого 100+200=300. Теперь 1000 - 300 = 700. И оставшиеся 700 рублей делим на 4,5 часа. = 155,5 рублей и округляем до 155 рублей. Ответ - за час работы школьным учителем получаем чистыми 155 рублей потратив 5 лет жизни на образование или 7 лет жизни на образование - тут пояснять не буду. И благодарность одного д....ба - вы сами выбирали эту профессию - оки не вопрос - какое будущее ждет ваших детей когда все молодые специалисты много хотят получать а стареньких у нас в коллективе кажется человека 4 осталось. еще несколько лет и их не станет. А получая такую зп нас еще и хаят все кому не лень. Если у кого то тут скажем в комментах профессия не связана с математикой это не означает что у других так же и другие так же не помнят что проходили.
Пришёл такой с экзамена по мат анализу, доказывал преподу производную сложной функции и раскладывал функцию по Макларена , а тут мне решили рассказать что такое производная)
Автор! Ты молодец. На 80-90 % очень понятно обьясняешь. Именно столько понимаешь в данной теме. Не обращай внимания на коменты. Некоторым просто не дано понять
Почему в задаче с тортом нельзя было бы 36(количество вафель) поделить на 4 (количество сторон торта) так бы мы в миллион раз сократили время выяснения 👌
Потому,что вы использовали факт того, что это будет квадрат, не предоставив доказательства факта, что среди всех прямоугольников данного периметра квадрат имеет наибольшую площадь
Например у тебя есть 100 конфет, ты их делишь на 2 кучки, потом ещё на две и т.д. пока не останется одна. Количество этих итераций и будет логарифмом log2(100). Если 2 умножить на результат этого логарифма, то получится 100. Вообще вся фигня которая делит саму себя пока не закончится будет выражаться через логарифмы
Логарифм возвращает степень числа. Например, логарифм 9 по основанию 3 вернёт 2. Типа, если возвести 3 в степень 2, то результатом будет 9. Тут нет ничего сложного. Есть еще десятичный и натуральный логарифмы. Это то же самое, только основания у них жёстко заданы.
Самое бытовое и частое применение логарифмов - это порядок числа. Что такое порядок числа? Это его десятичный логарифм. На сколько порядков 1000 больше числа 10? Два порядка. Количество нулей, или разрядов числа будет десятичный логарифм от этого числа менять на один. Например, число 4096 третьего порядка(но технически его десятичный логарифм больше трёх, но меньше четырёх). Или число 1.000.000 - шестого порядка. Или если у тебя в числе столько нулей, что если оно упадёт, то все его нулики раскатаются по полу, а значит проще оперировать его порядком. То есть значением его десятичного логарифма. Также громкость звука - это десятичный логарифм от отношения давления воздуха источника звука к давлению воздуха в приёмнике звука. 1 децибел - это давление воздуха. В 10 раз больше чем доходит до слушателя.
1. скорость - производная координаты (первая производная координаты от времени) 2. ускорение - производная скорости (вторая производная координаты от времени) 3. производных может быть бесконечно много, в редких случаях конечная производная не уходит в ноль (напр, для синуса, для e^x и тд)
Когда речь идёт о кап. предприятиях, стоит об этом уточнять, чтобы не вводить молодёжь в заблуждение. Есть и другие, с другой целью - удовлетворение потребностей и повышение КПД. Об этом не стоит забывать даже на математике ;)
Саме образліве в тому, що його я зрозумів, а ось моя вчителька по математиці, пояснює так, що... Іноді здається, що спеціально так щоб я не зрозумів. Дякую за відео, мені сподобалося.
Георгий. Спасибо! Я дожил! Мне 52 и школу закончил в 88, институт в 93м, и наконец-то вы мне объяснили так, как это надо было сделать за все эти годы с 84го наверное и до 93го :) Нахрена - это гениально! Спасибо! :)
Очень интересно. А запишите видео об экосистеме с хищными и не хищными рыбами. Как будет выглядеть развитие популяций при разных функциях. Поперебирать разные варианты. Думаю, это тоже было бы интересно и познавательно.
че не понятного, берем 36 вафель, берем производную и получаем 81 кусок торта, потомушта 9Х9 эта 81 !!! а если бы кондитер не умел в производные, то было бы только 36 кусков торта !!! Вот как важно знать таблицу умножения !!! )))
00:25 Зачем мы проходим производные
01:05 Что такое производная (без сложных определений)
01:20 Мгновенная производная
01:50 Примеры применения производных. Рита и итальянский язык
04:06 Основное применение - задачи на максимизацию-минимизацию чего-то
04:46 Пример от друга кондитера. Как найти наибольшую площадь
06:58 Экономическая задача. Максимизировать прибыль
09:04 Производные для прогнозирования численности населения. Дифференциальные уравнения
Только начал смотреть но не понимаю) за 2 недели 3 переатестации на работе(ТБ,ППБ,ПТЭ,ПУЭ и т.д) информация не усваивается читаю и мозг не воспринимает информацию, но через месяц сессия студент ИВТ и там эта прикладная математика...зачем мне это в жизни, через не могу и нехочу...устал
Ку
желаю тебе добро - обрати внимание на фрукты с позиции тренировки увеличать % их в рационе, хоть до 100%
Да! Нужны ответы на вопросы - зачем нам нужны логарифмы, интегралы и т.д. Потому, что в школе никто этого не объясняет.
Хм. Закономерно сделать ролик про интегрирование, обратную функцию дифференцирования.
А в чём разница между понятиями Дифференцирование и производная?
Ну и в чём разница между собственно Интегрированием и первообразной?
_
Ну и круто затронуть анализ Фурье. Как по мне одна из самых важных вещей в всём анализе.
Я думаю, если обсудили производные, можно обсудить и интегралы)
да интеграл-то понятно - это просто площадь фигуры, у которой сторона не прямая, а витьевая:) и если известно, по какой функции она кривится - вот тогда интеграл и поможет)
а вот как составлять эти функции было бы интересно, да
Jil Mirgin на самом деле не все так просто, ведь интегралы бывают разные не только Римановский но и Лебега, и Ито, а это теория вероятностей ребята)
Jil Mirgin и про площадь фигуры и линию её края, на самом деле если есть набор точек то по ним можно привести приближение(сделать интерполяцию) и этот многочлен будет с определённой точностью повторять ту линию, или например использовать кубический сплайн(грубо говоря множество многочленов которые перетекают друг в друга)
@@jilmirgin3034 Обычно нужно считать площадь на графике под прямой, а это значение будет работой этой функции.
Интегралы, чтобы шляпу достать.
интегралы, логарифмы, дифференциалы, пожалуйста
С логарифмами все просто, с дифференциалами лично я знаком из курса мат ананализа
Логарифмы 10 класс просто
Все перечисленное было в школе
@@ant1k-1 10 класс то просто конечно, но где и в каких сферах его нужно применять это вопрос поинтересней. К примеру в через логарифматор вычитание и экспоненцирование устроена операция деления
Для того, чтобы считать в физике и химии для ВУЗов
0:33 "Зачем вообще нужны эти производные" Оу, это я знаю, этот вопрос я задавал, и точно знаю, что правильный ответ - "Пиши давай!". Ну не будет же преподаватель врать, правильно?))
Пхвхпхах)
Сколько не учил производные, сколько не мучил я учителей и преподавателей. Но только благодаря этому ролику я понял их смысл. Одно дело, когда шаблонно считаешь по зазубренному алгоритму и совсем другое, когда понимаешь смысл того, что решаешь. Просто, доступно, понятно. Спасибо. Продолжай в том же духе.
"Зачем нужны эти тригонометрические функции"
если бы в школе на меня в то время тоже б выделили 15 минут пояснения зачем мне нужно это учить - мотивацыя была б побольше.
Согласен. Например, если бы в школах объясняли, что люди выглядят дураками, когда безграмотно пишут комменты на ютубе.
nicodimuscanis ну пробачте мене, що я допустив одну помилку, пишучи на чужій мові, яку ніколи не вчив. Поправте мене де потрібно, будь ласка
Ну можно сказать, что они и сами не знают где это может использоваться, т.к. они стали учителями, у которых практически нигде, кроме школы, не пригодились эти знания, тип у них нет смысла этого спрашивать, эффективнее всего будет спросить об этом у людей из других сфер пригодилось ли им это, а в детстве нам всем казалось, что учителя все знают, но почему то не рассказывают, из-за чего нам казалось, что это нигде не пригодиться...
P.S. они просто не могли об этом знать, так как инета раньше не было, загуглить негде. Я после того коммента немного задумался, но ведь не будь инета, я бы сейчас не узнал бы где могут пригодится производные, точнее как они работают в других отраслях и сферах, сложно даже представить где они еще применяются. А когда инета еще не было, то и о таких легких примерах не узнал бы...
@@taraspodvadtsiatnyk6141 щось українською ще більше помилок
Встречает мастер своего преподавателя по вышке лет через восемь после
окончания вуза, разговорились, вспомнили время былое. Профессор
спрашивает:
- Вот я вам читал три года высшую математику, скажи, в жизни тебе мои
знания когда-нибудь пригодились?
Студент, подумав:
- А ведь был один случай.
- Очень интересно, расскажите, я его буду на лекциях рассказывать, что
высшая математика не такая абстрактная наука и в жизни бывает нужна.
- Шел я как-то по улице, и мне шляпу ветром в лужу сдуло. Так я взял
кусок проволоки, загнул его в форме интеграла и шляпу достал!
🤭🤣
Ятакаяжефигня
Математика - не наука. Математика - инструмент. Что и доказал ваш анекдот
Что такое большая пьянка? Это такая пьянка у которой вторая производная не равна нулю. А что такое производная от пьянки? Это пьянка на выручку от сданных бутылок.
очень грустный анекдот, если честно )
Эта рубрика - лучшее, что случалось с гуманитариями.
худшее*
Нет. По вашему, человек который не знает математику и не человек то вовсе.
@Канал да так и есть
@@ИванФомин-к3в смотря что считать "математикой", например в мозге происходит непрерывный математический расчет где каждый нейрон складывает и умножает... если нейроны этого не делают значит мозг мертв...
@@xyzw777 Это интерпретация, на самом деле нейроны ничего не считают, там происходят процессы другого сорта. Это всё равно что сказать, что водород считает сколько молекул кислорода ему присоединить, фигура речи так сказать.
Очень радостно, что есть такие видео. В школе, универе я их решал, но так и не понимал зачем. Наконец-то понял) спасибо!
персонально ведущему спасибо.если бы все преподаватели математики были такие как Вы то было бы прекрасно. вам спасибо за Вашу работу.Большая польза.
В процессе объяснения прозвучало "дифференциальное уравнение". А объяснено поверхностно. Будет интересно послушать.
Простыми словами: функция, которая содержит не только x и функцию от него, но и производные от функции. Где применяется? Везде где есть системы, в которых важно учитывать скорость изменения компонентов (в химии для описания реакций, в физике для описания колебаний или распространения волн или движения планет, в экономике, статистике и т.д., в общем одна из самых полезных вещей, которая математика могла подарить миру). Однако там мало что можно рассказать, если человек не знает смысл интегрирования и дифференцирования.
второго порядка в частных производных, пожалуйста
Помню решал дифференциальные уравнениея 4го порядка методом Кордано и методом Феррари
Кардан от феррари=))))
@@skalerok Где это можно узнать лучше всего - книга или сайт? А то я решаю дифуры просто по факту, а не понимаю как строятся эти уравнения для физических процессов, особенно с частными производными.
Курс дифференциального и интегрального исчисления. Фихтенгольц Григорий Михайлович
В 3 томах :)
Спасибо огромное! Предлагаю сделать рубрику по последовательному разбору тем школьной программы. Кажется, это был бы очень хороший вклад в общество.
QuarterGod только не как сейчас а подробно и понятно
@@Mihail_Duymin подробно и понятно - всем не интересно). Поэтому отдельно живёт научпоп, а отдельно каналы с подробным разбором.
Если нужно подробно и понятно, можно подписаться на данный канал - soul solution (физика, математика), а так же рекомендую гет э класс \ get a class (отдельно каналы по физике и математике модулями \ интересными вопросами); елена савченко (егэ и геометрия по математике).
@@Mihail_Duyminподробно и понятно за отдельную плату))) в моем случае дело не в том что мне жалко, а в том что злит от группы к группе что несколько человек реально хотят ее учить,остальным все равно. Про других математиков не могу сказать.
ВОТ ОГРОМНОЕ ОГРОМНОЕ СПАСИБО!! .. ЖАЛЬ ЧТО ЭТО НЕ ОБЪЯСНЯЮТ ДЕТЯМ, ЧТО ВАМ ЭТО НУЖНО!!!! ребенов в 13-15 лет не знает кем будет работать, что его заинтересует. а любые знания ВСЕГДА РАСШИРЯЮТ ГОРИЗОНТЫ ВОЗМОЖНОСТЕЙ!!! ......родители хотите дать ребенку больше возможностей - дайте больше базовых знаний и умение учиться!!!!!!!!
Если ребёнок в будущем будет заниматься тем что действительно ему интересно он пренепременно разгрызёт эти школьные математические понятия. Оценка моих математических навыков в школе вела к тому что я скорее стану историком, но всё же я технический специалист и работаю с математикой очень тесно в сфере компьютерных наук.)
Было бы очень круто увидеть в таком формате видео о диференциалах, раскрытие темы производных первого и второго порядка, а так же примеры применения двойных интегралов. P.S. спасибо за пример с моделью Лотки-Вольтерры))
"... на шею надели тройной интеграл...".
Про все, в конце предложенное, было бы интересно посмотреть
В особенности про интегралы)
"многие из вас до сих пор помнят..." я нихуя не помню
Комплексные числа!) Поподробней пожалуйста )))
Детский сад (для меня)
Хороший Человек комплексные и так все понятно
Не надо, дальше придётся понимать гиперкомплексные числа и кватернионы
Кубическое уравнение в общем виде)
Электротехника: активная, реактивная энергия, индуктивность, емкость... Там, где есть переменный ток и(или) переходные процессы придется решать эти задачи. Комплексные числа прекрасно описывают физику процессов.
До этого видео вообще не понимал что вообще такое производные!!! Спасибо тебе любимый Вольфсон!!!
Да, да, и интегралы, и логарифмы, и матрицы, пожалуйста! Весьма интересно слушать
Да, интересно в таком формате высшую математику изучать) ( я гуманитарий вообще)
В таком формате вы ничего не изучите. Для высшей математики нужна довольно основательная практика в виде решения примеров и задач.
В формате "мне бы троечку"...
)
т.е. вы что- то поняли!?
@@Mihail_Duymin в том-то и дело, что все поняла)
Диана Демидова самообман
Да-да-да, очень интересны ролики такого толка: зачем нам нужны основные элементы вышки. Очень интересно. О чем-то никогда не говорили ни в школе, ни в институтах. Что-то уже забылось сто раз. Интегралы, первообразные, синусы-косинусы - очень хочется услышать в таком подробном описании. Прямо плейлист хочется с названием "Как нам могут пригодиться ". И большое спасибо за ликбез!
Для тех, кто не понял про торт:
Автор таки решил делать торт прямоугольным, хотя у фигуры ближе к кругу площадь априори больше, но ок.
Задача: Знаем периметр прямоугольника. Какая длина и ширина должна быть, чтобы его площадь была максимальной?
Длину вафелек не учитываем, их ломать не будем, просто примем за единицу.
Тогда P = 36, x - длина одной из сторон прямоугольника. Длина второй стороны: P=2(x+y)= 36, y= 36/2-x = 18-x.
Тогда площадь равна S = x*(18-x) = 18x -x2.
Получили функцию, где по оси абсцисс одна из длин прямоугольника - x, по оси ординат - величина площади (Это перевернутая парабола)
Максимальный экстремум функции - искомая величина. А экстремум ф-и - это когда производная равна 0 ( хотя это недостаточное условие, но т.к. это просто парабола, то можно и забить)
Высчитываем производную, приравниваем ее к 0 и считаем x
На деле же супер неудачный пример.
Большое спасибо за производные. Было бы здорово услышать от Вас про число "е". Про его связь с физическими процессами. И, если возможно, формула Эйлера. Для понимания электротехники она очень важна.
Мне кажется, было бы интересно обсудить математическое моделирование в целом и разные интересные ситуации с применением математических моделей! Спасибо за вашу работу!
Большое спасибо за объяснение. Думаю, идеальное продолжение- использование интегралов в жизни. ВРоде как они чаще используются.
Если согнуть пооволку интегралом можно подцепить что нибудь
Вич например
@@MrRoxal ахахахахаххахахахахахахазазаазазазхаххахахахахахахахахахахахахахазахахахахахахахахахахахахахахахахахахазазаззазаахахахахахахахахахахахахаххахахахахахахахахахахахаххааххахахахааххахахахахаха непонел
как при слове производная вспоминается слово рост так при слове интеграл вспоминается площадь
@@liafrankenstein8739 рост может быть интегралом, как и площадь производной, так что не ясна суть
Перед просмотром выделил 4 ответа на вопрос, заданный в тексте. Производные нужны для :
1. Аппроксимации функций.
2. Задач оптимизации.
3. Решения дифуров.
4. Понимания интегрирования.
Был приятно удивлён, что автор почти все эти вопросы задел. Автор молодец.
Отличное повествование, спасибо! Интересна была бы любая выше предложенная тема. Но идеальный вариант, это обзор всей школьной и вузовской математики с точки зрения практического применения. Спасибо ещё раз!
Согласен, всё наше образование, что математика, что физика или геометрия, это набор каких-то абстрактных ситуаций, оторванных от реальности.
Отлично, теперь так же бы про интегралы
Veeron Ten сразу с тройных интегралов начать )))
Интеграл это площадь под кривой
@@suncarsteam А неопределенный зачем нужен?
Тоже долго не мог их понять (хотя и сейчас в них профан), но однажды увидел такой рисунок: Крючок интеграла, внизу написано "рождение", над ним написано "смерть", а посередине "жизнь". То есть, как я понял, интеграл - определяет собой какой-то изменяющийся процесс с течением времени.
@@Leo_Jones1 Нет.
Вот именно! В школе не любила математику, потому что учителя плохо объясняли математические понятия, а, главное, их практическое применение. Оказывается, что математика удивительно интересная наука. Чем дальше, тем больше убеждаюсь, что математика - царица наук! Спасибо за отличное объяснение!
они сами не знают, т.к. не работали в тех областях.
Математика - это вообще не наука, а иностранный язык.
Я один тут всё равно ничего не понял?
Такая формулировка и не даёт понять. Она присуща всем людям с такой проблемой. Все объяснения в математике наслаиваются друг на друга. Если Вы не поняли 1 звено, то остальные не поймёте точно. Нельзя надеяться, что мол это не понял, дальше по ходу пойму. Так не работает. Так что Вы не могли не понять ничего. Вы не поняли что-то одно в начале. На этом моменте надо остановиться, а не идти дальше. На чем конкретно было это самое первое непонимание?
@@6144100ну это само собой, но вот я не понимаю примера с тортом. Нужно сделать огородку из вафелек так, чтобы торт был максимальной площади. Что это за *****, простите?
Да на самом деле автор - бездарь. Вот из-за таких, как он дети в школе элементарных вещей не понимают. Тот же пример с тортом с вафлями. Я вообще не понял, что там надо было ограждать и от чего. Вместо того, чтобы упростить, он ещё больше нагоняет жути. Хотя суть производной не такая уж и сложная. Вполне возможно за 5 минут доходчиво объяснить.
@@АндрейКлоков-й8э понятнее всего, из того, что я только видел, производную объяснил парень с канала shiz.
Вроде понятно. Надо вы че?
Блин, почему у нас не такой учитель математики был))) ты лучший!
Идея темы: можно рассмотреть примеры применения тензорного счисления в прикладных задачах
Ага а еще можно ответить на вопрос зачем решать нерешаемые интегралы!
@@Артем-м9у3э а еще еще лучше вопрос практическое применение решения нерешаемых интегралов в инжинерном проектировани ( чего угодно, там гту двс, ветро генераторов или электроцепей , это уже не суть) даю ответ зарание все делается практически по наитию и математика там нужна меньше чем статистика
да это опять таки тема интересна будет нам математикам а остальным ребятам и девчатам интереса будет как тех кто пишет в комментах с юмором мягко намекая что она нафиг не нужна...тут хз что нужно. в том то и дело.
1:10 Я думаю правильнее сказать: производная - это скорость изменения функции
Нет. Если говорить просто об изменении безотносительно его направления, то производная всегда будет положительная, т.е. она будет показывать факт наличия изменения и выражать его количественно. Так работает спидометр на машине: не важно, едет она вперёд или назад, спидометр всегда показывает только положительную скорость. А когда мы говорим именно о росте функции, то убывание - это уже отрицательный рост, а не просто изменение на какое-то значение не важно в какую сторону, и производная тоже будет отрицательной.
@@deleteddeleted4120 Да. Ты чё наглый такой вылез многотекста кинул? Человек по факту всё написал. Ты приплёл удобную для себя СО и начал что-то перечить. Относительно любой точки пространства можно сделать совершенно разные выводы. Но у функции есть конкретное понятие нуля функции. Совершенно аналогичным образом дела обстоят с производными. Вот где он ошибся конкретно ты скажи?
Георгий, Вы записывайте! Мы, гуманитарии, с удовольствием посмотрим! Спасибо за видео!
Это гениальная вещь, которую я по-настоящему прочувствовал в университете. Математический аппарат термодинамики построен на применении аппарата математического анализа. А именно те самые производные в частности. И какое было удовольствие понимать, что математика описывает процессы в системе. Что при бесконечно малом изменении одного параметра системы наблюдается бесконечно малое изменение другого (или же отклик системы). Определение производной по Лейбницу очень важно. И, конечно, же химическая кинетика. Изменение концентрации во времени. Это базис, с чего начинается построение этого раздела. Спасибо, что упомянули. Сам с этим сталкивался. Без производной невозможно понять и описать наше мироздание. Школьники, задающие вопрос "А зачем мне это надо?", не понимают всего величия. Да хотя бы для общего развития. Ты живешь в этом мире и должен базово понимать, как он описывается
пока ты говоришь "должен" "обязан" и находишь оправдания своим действиям, маленькие дети будут наплевательски относиться ко всем вокруг, потому что именно ты навязываешь свой бред и мнение которое никому не интересно кроме тебя и подобных тебе.
тебе - наплевать на них
им - наплевать на тебя
отсюда рождается хаос и разрушение, из за человеческого снобизма, эгоизма и остальных приземленных черт присущих существам вроде тебя.
я бы тебе разъяснил за жизнь на земле без оскорблений, но ты не поймешь и не вывезешь.
удачи в развитии кусок кхм
Ну дело в том что не всем школьникам в их 14 лет упали твои термодинамики лол, они во-первых сами ещё до конца не знают кем хотят быть, во-вторых в подавляющем большинстве случаев нигде кроме школы не учатся и не готовы сожрать добровольно и вдумчиво тонны материалов чтобы эту термодинамику понимать. Им может быть интересна музыка, история, философия, программирование, прикладная физика, биология, что угодно ещё помимо вот того что ты рассказал. Я к слову тоже много чего из математики понял уже на практике когда писал программный код, но это скорее элемент визуализации, когда ты понимаешь что ты написал сам и видишь результат на экране, можешь это повращать, "пощупать" так сказать. Когда ты ребёнку на листе бумаги рисуешь какую-то линию и пишешь там "эф от икс" он нихрена не поймёт и будет прав.))
Сделайте такое же видео про интегралы, пределы, ряды или дифференциальные уравнения! Очень интересно узнать об этом!
Больше практических примеров, пожалуйста! Спасибо за годный контент)
что за глупый вопрос? чтобы сдать мат. анализ :)
Нам так и говорили
ээээ чтоблять?? производные в шокле учат если что.. какой нах матан?
@@fedsham товарищ 5 класс, пожалуйста, сначала поступите в технический ВУЗ, и сами все поймёте
@@stevr_lich ты кукухой поехалреально.. хз как сейчас а производные я лично учил в школе.. в тех вузе я тож начинал учиться и таки не закончил его.. и там математика начиналась с пределов.. котрые мы чутка тоже в школе затрагивали... а интригалы уже после были... матан это вообще другое .. чему сейчас в школах учат я хз... видимо - писать коменты с айфонов.. прогресс как никак
не спорю, в школе учат
а в ВУЗе переучивают, чтобы люди наконец поняли
если ты учился - ты должен знать, что производная выражается через предел например.
а пределы в школе не учат
а судя по твоей грамотности, особенно в предыдущем коменте - ты даже школу не окончил.
и учился в запердяйловске, где научился только куковать и материться.
Вам спасибо огромное!
А я всегда знал, что в школьном образовании не хватает того, что детям не объясняют и не показывают то, для чего и зачем они что-то учат и самое главное как это можно использовать в жизни. В итоге я знаю что есть "молоток", но что им можно "забивать гвозди" я узнаю намного позже и уже тогда, когда мне это будет не нужно!
А самое печальное- если вдруг понадобилось скрепить две доски, и вроде тебе дали гвоздь, а как его забить - не известно.
Получил твёрдую 4 по матанализу на первом семестре. Спасибо, ты меня запутал первым примером
Георгий, спасибо за Ваш труд! Мои пожелания: математика применительно к автоматическому регулированию, например, пид регулятор, передаточная функция системы, нули и полюса, преобразование Лапласа. У меня сейчас стоит задача написать программу защиты электродвигателя от перегрева. Тепловая модель электродвигателя - дифференциальное уравнение, это все понятно. Но как применить эту модель на практике - неясно. Два института за плечами не помогли. Все это наверно будет неинтересно большому кругу людей, но может вы сделаете отдельный плейлист для специалистов, которые занимаются моделированием, программированием, автоматикой и т. д.
Интегралы интересуют и желательно откуда они появились, то есть как к ним пришли, более глубокое обьяснение) спасибо)
в любом учебнике это написано
Георгий, классно! Наконец-то понял смысл производной, спасибо! Было бы интересно посмотреть разобр по такой же схеме понятия логарифма. Если такая ситуация возможна, то сделайте, пожалуйста)?
Замечательное видео, ведущий профессионал своей тематики
vsegda s bolshim interesom smotriu vashi video uroki, bolshintstvo iz nix peresmatrivaiu po neskolko raz. spasibo za vashi starania.
Как говорила моя преподавательница по высшей математике: "мало где она пригодится, зато она очень хорошо развивает мозги"
Спасибо за видео! Как на счёт ролика о статистике? Параметрические методы, непараметрические, коэффициент Стъюдента, среднее значение, медиана, мода и т. д. Конечно, я знаю, зачем мы это обсуждали на первом курсе, но многие не понимают)
сделайте про диффуры подобное))
Дифуры в реальной жизне вообще на каждом шагу. Можно даже сказать, что все где есть производная, обязательно скатится к дифурам.
Спасибо огромное.В школе математику терпеть не мог и еле 3 получал, но когда пошел в вуз то пришлось понять ее и полюбить) Теперь когда натыкаюсь на такие видео - с удовольствием смотрю как что то развлекательное) Кстати да, интегралы классно бы было еще, а после них использование интегралов в теории вероятности
Вот необходимо сразу объяснять зачем и показать пример, так одновременно и понятней и полезней.
Самый любимый момент: "Как мы с вами заем..."
Вот вообще я ничерта не понял из этого "как мы знаем"
У нас препод пример так любила говорить "очевидно из _ следует _ " и пошла дальше рассказывать. А потом на экзамене один вызубрил и повторяет "очевидно из _ следует _", а она ему: "Это мне очевидно, а вы докажите" (:
Очень классная подача материала! Огромное спасибо!
Лучше цикл по всем витиеватым словам! "От производной до ..."
Алгебра называется ваш цикл. Берите учебник и вперед.
Единственное видео, после которого я понял с чем едят производные. БОЛЬШОЕ СПАСИБО!!!
Было бы интересно понять и интегралы, и логарифмы, и т.д. - с чем их едят.
Особенно как они могут соприкасаться с экономикой.
Было бы полезно узнать какие функции высшей математики могут быть применимы в, например, азартных играть, например, в рулетке.
Где есть скажем определенный заданный диапазон чисел, но нет определенности в какой последовательности они могут выпасть.
Вы большой молодец! Это правильный подход к объяснению производных!
Недавно читала план преподавания математики в спо: сначала производная, потом пределы, потом последовательности... Атас! Где логика, в чем смысл?! 🤦 Очень многое зависит от учителя! Удачи вам!!!
Спасибо большое за видео. Еще интересно было бы послушать про интегралы.
Присоединяюсь к просьбе.
Отлично, а можно теперь о пределах lim, в таком же формате?
могу вкратце)
предел сверху - потолок. снизу - пол. слева - левая стена, справа - правая :)
ну тип мы бесконечно близко приближаемся к их центру с уменьшением шага (чтобы не пропустить \ не перешагнуть этот центр).
@@soulsolutionfm и самое главное не пересекаем его.
@@kirillkirillov8023 не всегда. Например тригонометрические функции бесконечно могут пересекать свою асимптоту
я вот очень обрадовался, когда понял, что решаю тригонометрические задачи при программировании игр )
Где?
@@_glowlight_8583 в пространстве, куча задач на просчет дистанций и углов, имея какую-то входящую порцию данных на руках
@@veeronten4886 так, а где здесь про углы?
@@_glowlight_8583 я не конкретно по теме видео, а в общем про то, как интересно математика может прикладываться на практике
Да вы ещё и прозой разговариваете.
Интересно рассматривает вопросы. Это бы взять на вооружение преподавателям в школе.
Нормальный математик объясняет как человек. В школе и институте эти математики со своим чувством превосходства над остальным человечеством отбили весь интерес к предмету. А оказалось что я не такой уж и тупой в точных науках. Сейчас нагоняю через таких как ты, спасибо)
Может про нейронные сети с деталями расскажете? Очень классно преподносите материал. Спасибо!
Только хотел написать. Объяснение Backprop для чайников
короче: вычислим интеграль от сыра и получим КОРОВУ!
Не совсем. Получили первообразную
@@zvezdochkacode9172 т.е. молоко
интеграл от сыра будет float32
Про ряды Фурье интересно. Вроде с их помощью создают разные эффек ты для RGB светодиодов...
Сигналы разлагаются в ряд Фурье,если интересно гугли прямоугольный сигнал ряд Фурье,пилообразный сигнал,треугольный сигнал
В эквалайзере применяется, пробовал написать, застрял в дебрях.
Поддерживаю, ряды Фурье одно из самых востребованных в практике математических изобретений, и применяются даже в таких областях о которых я себе даже не представлял.
@@flytsokotly2006 в эквалайзере применяется интегральное преобразование Фурье,простыми словами разложение сигнала на составляющие частоты(спект)
Кому интересно посмотрите ролик на канале 3blue1brown про ряд Фурье и про преобразование
Это важно. Школьники и первокурсники должны высказать особенное уважение.
Лучшее вступление, какое я когда-либо слышал
Спасибо огромное, самое полезное видео
зачем нужны дифференциалы
@@MrGoloder с языка снял))
Зачем нужны дифференциалы на переднем приводе?
Пётр Батанеевич Суляндзига объяснил бы на примере общаги и колбасы:)
Чтобы их интегрировать :)
чтобы сдать матан
Зачем нужны эти матрицы, их определитель и умножение
Матрицы - удобный способ решать системы уравнений с 2 и более неизвестными, что имеет применение в жизни, но не в быту.
матрицы нужны, к примеру,чтобы сравнивать массивы данных и находить в них зависимости и закономерности, к примеру в продуктовом ритейле могут анализировать влияние освещенности или температуры в торговом зале на продажи какого - то товара, также операции с матрицами происходят во время обработки данных видеокартой для того, чтобы мы с вами могли поиграть в компьютерный игры=) и так далее)
Богдан Коржик в программировании, мне лично в c++
базы данных по сути строятся на матрицах
MrLemon Ivanov +
Да, тоже самое про интегралы очень актуально. И ещё про дифференциалы и разницу между ними и производными
всегда меня мучили эти вопросы, и в школе , и в вузе- как конткретно и где применяются всякие формулы(кроме простых бытовых примеров), а училась на отлично и математику любила
Спасибо, как я понял производные чаще всего используются для прогноза или для анализа динамики.
для машинного обучения (прогнозов) производные важны но там все намного сложнее чем может показаться с первого взгляда
@@liafrankenstein8739 и что, ты за 2 года убедился в несостоятельности своей гипотезы?
Он прямо намекнул на такую проблему того, что в школах больше ебут мозги, чем поясняют. Молодца мужик!
24 типов различных документов для трудоустройства в школу, 1 прокурорская проверка в месяц, 1 открытый урок и еще множество множеств всяких проверок в течении первой недели работы за 25000 в месяц в любом крупном городе страны - берем 25 рабочих дней - очевидно что все знают что это за хрени))) иными словами поясняю - 25000 делим на 25 рабочих дней учителя в месяц равно = 1000 рублей в день. Рабочий день учителя это где то для примера возьмем 6 уроков переводим на количество пар = получаем три пары. Три пары это три раза по 1,5 часа иными словами умножаем 3 на 1,5 = 4,5 часа без учета всех перемен. Теперь на дорогу нужна денюшка?нужна. На еду нужна денюшка? нужна. не у всех жены готовят. даже у нас математиков. 100 руб на дорогу, 200 округленно на еду и это в крупном городе. Итого 100+200=300. Теперь 1000 - 300 = 700. И оставшиеся 700 рублей делим на 4,5 часа. = 155,5 рублей и округляем до 155 рублей. Ответ - за час работы школьным учителем получаем чистыми 155 рублей потратив 5 лет жизни на образование или 7 лет жизни на образование - тут пояснять не буду. И благодарность одного д....ба - вы сами выбирали эту профессию - оки не вопрос - какое будущее ждет ваших детей когда все молодые специалисты много хотят получать а стареньких у нас в коллективе кажется человека 4 осталось. еще несколько лет и их не станет. А получая такую зп нас еще и хаят все кому не лень. Если у кого то тут скажем в комментах профессия не связана с математикой это не означает что у других так же и другие так же не помнят что проходили.
Я это все к тому что учеников я тупыми не называю но они бесконечно к этому стремятся сами)))
Пришёл такой с экзамена по мат анализу, доказывал преподу производную сложной функции и раскладывал функцию по Макларена , а тут мне решили рассказать что такое производная)
Спасибо за выпуск. Очень хочется математики в моделировании и экономике.
Автор! Ты молодец. На 80-90 % очень понятно обьясняешь. Именно столько понимаешь в данной теме. Не обращай внимания на коменты. Некоторым просто не дано понять
Спасибо! Пригодиться на уроках математики! Давно искал что-то подобное. Можно видео про sin и cos? Ученики тоже часто спрашивают жизненные примеры.
Если есть знание, всегда надётся куда его применить.
если есть чем применять...
Почему в задаче с тортом нельзя было бы 36(количество вафель) поделить на 4 (количество сторон торта) так бы мы в миллион раз сократили время выяснения 👌
Потому,что вы использовали факт того, что это будет квадрат, не предоставив доказательства факта, что среди всех прямоугольников данного периметра квадрат имеет наибольшую площадь
Счастье - это первая положительная производная от хорошего настроения.
искал везде и все таки нашел. Одна фраза наконец-то поставила все на место. "производная - это скорость роста функции"
10:40
Травоядные рыбки :D
Рыбки едят водоросли :D
@@ВасильевВасилий-в1с но точно не эти.
мне интересно как применяют логарифмы, зачем они нужны
Dmitriy применяют, чтобы найти показатель степени
Например у тебя есть 100 конфет, ты их делишь на 2 кучки, потом ещё на две и т.д. пока не останется одна. Количество этих итераций и будет логарифмом log2(100). Если 2 умножить на результат этого логарифма, то получится 100. Вообще вся фигня которая делит саму себя пока не закончится будет выражаться через логарифмы
на сколько я понимаю, то штангенциркуль это та же самая логарифмическая линейка
Логарифм возвращает степень числа. Например, логарифм 9 по основанию 3 вернёт 2. Типа, если возвести 3 в степень 2, то результатом будет 9.
Тут нет ничего сложного. Есть еще десятичный и натуральный логарифмы. Это то же самое, только основания у них жёстко заданы.
Самое бытовое и частое применение логарифмов - это порядок числа. Что такое порядок числа? Это его десятичный логарифм. На сколько порядков 1000 больше числа 10? Два порядка. Количество нулей, или разрядов числа будет десятичный логарифм от этого числа менять на один. Например, число 4096 третьего порядка(но технически его десятичный логарифм больше трёх, но меньше четырёх). Или число 1.000.000 - шестого порядка. Или если у тебя в числе столько нулей, что если оно упадёт, то все его нулики раскатаются по полу, а значит проще оперировать его порядком. То есть значением его десятичного логарифма. Также громкость звука - это десятичный логарифм от отношения давления воздуха источника звука к давлению воздуха в приёмнике звука. 1 децибел - это давление воздуха. В 10 раз больше чем доходит до слушателя.
Ускорение из физики - аналог производной. Правильно я понимаю?
Ускорение - производная от функции скорости
А скорость производная от координати, вообще круто наскільки це пов'язано.
еще может быть ускорение ускорения, и ускорение ускорения ускорения, итд.
1. скорость - производная координаты (первая производная координаты от времени)
2. ускорение - производная скорости (вторая производная координаты от времени)
3. производных может быть бесконечно много, в редких случаях конечная производная не уходит в ноль (напр, для синуса, для e^x и тд)
Огромное спасибо ! Давно искал канал который обьяснит как все формулы "на пальцах" в жизни использовать.
Когда речь идёт о кап. предприятиях, стоит об этом уточнять, чтобы не вводить молодёжь в заблуждение. Есть и другие, с другой целью - удовлетворение потребностей и повышение КПД. Об этом не стоит забывать даже на математике ;)
Вроде сначала понятно.Но потом бац и откуда-то взялся корень из производной.Откуда ? Для чего ? И все уже дальше не понятно.
Ничего не понял, но было интересно
Значит, все-таки вам было НЕинтересно.
Если бы вы знали сколько инженеров не знают, что такое производная..
Саме образліве в тому, що його я зрозумів, а ось моя вчителька по математиці, пояснює так, що... Іноді здається, що спеціально так щоб я не зрозумів. Дякую за відео, мені сподобалося.
Георгий. Спасибо! Я дожил! Мне 52 и школу закончил в 88, институт в 93м, и наконец-то вы мне объяснили так, как это надо было сделать за все эти годы с 84го наверное и до 93го :) Нахрена - это гениально! Спасибо! :)
А 36-гранник не будет иметь бОльшую площадь?
Будет, но, видимо, рассматривалась именно прямоугольная форма, а не условный круг.
потому что повар задолбается 36-гранник делать.
@@ledle3949 можно просто круглый торт сделать. Это очень похоже на 36-гранник.
@@artemhnilov нужно же вафлями обложить
@@ledle3949 ну вот приблизительно и получится круг
9:18 смотрите что в Японии случилось)
блин много воды и ничего не понятно
Очень интересно. А запишите видео об экосистеме с хищными и не хищными рыбами. Как будет выглядеть развитие популяций при разных функциях. Поперебирать разные варианты. Думаю, это тоже было бы интересно и познавательно.
Марк Яковлевич Выгодский, книга 1933г. Основы Исчисления Бесконечно-малых. Читаю и считаю и всем советую.
Господи... А нельзя было просто разделить количество вафелек на 4?)))
и как бы вы поняли, что именно это действие покажет как разложить печеньки для занятия максимальной площади?
@@MrLotrus у торта 4 стороны.
он хотел вроде чтобы торт был в форме прямоугольника
хрен понял пример с вафлями, именно аналогия не понятна, что там нужно было рассчитать с кусками я даже в условии не понял.
че не понятного, берем 36 вафель, берем производную и получаем 81 кусок торта, потомушта 9Х9 эта 81 !!! а если бы кондитер не умел в производные, то было бы только 36 кусков торта !!! Вот как важно знать таблицу умножения !!! )))
Если вы работаете программистом, то вопрос "зачем нужны зти..." вы точно не будете задавать.
@@through-it HTML - язык программирования.
@@CraBiKun это не язык программирования
Отличное видео, теперь понял, что 4 курса прошли не напрасно! Согласен, иногда эти знания пригождаться в неожиданных местах ))
Большое спасибо вам за ваш труд 🙏 🕊