Ja tez kiedyś chciałem wyjaśnić w krótkim filmiku jak działa Nurek Kartezjusza i musiałem dojść do tego skąd się bierze masa w ogóle i doszedłem do składników atomów i unitów.
piorun kulisty przedstawia nam w jaki sposób zbudowany jest atom, ponieważ piorun kulisty prezentuje atom po wybuchu atomowym. A skoro temperatura błyskawicy jest wyższa od wybuchu atomu dlatego rozmiary tego atomu są dużo większe. Gdy temperatura atomu ostygnie to wtedy piorun kulisty kurczy się do rozmiaru normalnego atomu i staje się niewidoczny dla nas.. Zobacz jak wygląda budowa atomu i jak działa atom. th-cam.com/video/4Ee3izrP4q4/w-d-xo.html
42:6.7 (477.1) Każdy atom ma nieco ponad 1/40.000.000 centymetra średnicy, podczas gdy elektron waży nieco więcej niż 1/2.000 najmniejszego atomu wodoru. Dodatni proton charakterystyczny jest dla jądra atomowego i chociaż może nie być większy od ujemnego elektronu, waży prawie dwa tysiące razy więcej. 42:7.2 (477.4) Elektrony krążą wewnątrz atomu wokół centralnego protonu, mając mniej więcej tyle samo miejsca, co planety, kiedy krążą wokół Słońca w Układzie Słonecznym. Pomiędzy jądrem atomowym a wewnętrzną orbitą elektronową istnieje relatywnie taka sama odległość, proporcjonalna do rzeczywistej wielkości, jaka jest między wewnętrzną planetą, Merkurym, a waszym Słońcem. 42:7.3 (477.5) Prędkości obrotowe elektronów wokół osi, jak również ich prędkości orbitalne wokół jądra atomowego, przekraczają ludzką wyobraźnię, nie mówiąc już o prędkościach ich komponentów - ultimatonów. Dodatnie cząstki radu wylatują w przestrzeń z prędkością szesnastu tysięcy kilometrów na sekundę, podczas gdy cząstki ujemne osiągają prędkość zbliżoną do prędkości światła. 42:7.8 (478.2) Podczas gdy atomy mogą posiadać od jednego do stu orbitujących elektronów, w większych atomach zaledwie dziesięć zewnętrznych elektronów krąży wokół centralnego jądra jako niezależne i odrębne ciała, poruszając się integralnie i zwarcie po precyzyjnych i konkretnych orbitach. Trzydzieści elektronów, najbliższych centrum, trudno jest zauważyć i wykryć jako oddzielne i zorganizowane ciała. Taka sama, względna proporcja zachowania się elektronów w zależności od bliskości jądra, obowiązuje we wszystkich atomach, niezależnie od liczby elektronów w nich zawartych. Im bliżej jądra tym mniej elektronowej indywidualności. Falopodobne strefy energii elektronu mogą się tak rozprzestrzeniać, że całkowicie zajmą niższe orbity atomowe; odnosi się to zwłaszcza do elektronów najbliższych jądra atomowego. 42:7.9 (478.3) Trzydzieści najbardziej wewnętrznych, orbitujących elektronów, posiada swą indywidualność, ale ich systemy energii mają tendencje do mieszania się, rozciągając się od elektronu do elektronu i prawie od orbity do orbity. Następne trzydzieści elektronów stanowi drugą rodzinę czy strefę energii i posiada zaawansowaną indywidualność ciał materialnych, rozciągających pełniejszą kontrolę nad towarzyszącymi im systemami energii. Następne trzydzieści elektronów jeszcze bardziej zindywidualizowanych - trzecia strefa energii - krąży po wyraźniejszych i bardziej konkretnych orbitach. Dziesięć ostatnich elektronów, istniejących tylko w najcięższych pierwiastkach, posiada znaczny stopień niezależności i dlatego są one zdolne do ucieczki, bardziej czy mniej swobodnej, spod kontroli macierzystego jądra. Przy minimalnych zmianach temperatury i ciśnienia, członkowie czwartej i najbardziej oddalonej od środka grupy elektronów będą uciekać z objęć centralnego jądra, jak to widać na przykładzie samoistnego rozpadu uranu i podobnych mu pierwiastków. 42:8.3 (479.1) W jądrze atomu naładowane protony i pozbawione ładunku neutrony trzymają się razem dzięki obustronnemu działaniu mezotronu, cząstki materii 180 razy cięższej od elektronu. Bez takiej adaptacji ładunek elektryczny protonu mógłby zniszczyć jądro atomowe. 42:8.4 (479.2) Przy istniejącej budowie atomu ani siły elektryczne ani grawitacyjne nie utrzymałyby spoistości jądra. Integralność jądra jest zachowywana dzięki spajającemu działaniu mezotronu, który może trzymać razem cząstki naładowane i nie naładowane, w wyniku wyższej mocy siły-masy i dzięki dodatkowej funkcji, która powoduje ciągłą zamianę miejsc protonu i neutronu. Mezotron sprawia, że ładunek elektryczny cząstek jądra jest nieustannie przerzucany w tę i z powrotem pomiędzy protonami i neutronami. W jednej, nieskończenie małej części sekundy, dana cząstka jądrowa jest naładowanym protonem a w następnej już neutronem bez ładunku. I takie, kolejne zmiany statusu energii, są tak niewiarygodnie szybkie, że ładunek elektryczny pozbawiony jest wszelkich możliwości działania w charakterze wpływu rozrywającego. Tak więc mezotron działa jako „nosiciel energii”, jako cząstka, która w znacznym stopniu przyczynia się do stabilizacji jądrowej atomu. 42:8.5 (479.3) Obecność i funkcjonowanie mezotronu wyjaśnia również inną atomową zagadkę. Kiedy atomy zachowują się radioaktywnie, emitują znacznie więcej energii niż można się tego spodziewać. Ta nadwyżka promieniowania pochodzi z rozbicia mezotronowego „nosiciela energii”, który, skutkiem tego staje się zwykłym elektronem. Rozpadowi mezotronowemu towarzyszy emisja pewnych małych, nie naładowanych cząstek.
Bardzo ładne streszczenie; mam tylko wątpliwości, czy mechanika macierzowa Heisenberga nie powstała w ’25, jeszcze przed mechaniką falową Schrödingera.
Jądra helu w takich eksperymentach to promieniowanie alfa. W tamtych czasach jako ich źródła używało się pierwiastków radioaktywnych zapewne radu albo polonu.
A czy fizycy odkryli już MEZOTRONY? - cząstki spajające jądro atomowe, powodujące cykliczne zmiany protonu w neutron i na odwrót, co tłumaczy brak rozpadu jądra??? A może fizycy odkryli budulec - ULTIMATONY ??? ( 1 elektron składa się ze 100 ultimatonów )
@@eureka_kanal dla mnie akurat nie ma to znaczenia, ważne, że wszystko bardzo wyraźnie i zrozumiale jest mówione. Aaa i nadrabiam polubienia w pana filmikach bo zawsze po prostu zapominam>
Specjalny, jubileuszowy odcinek. Zapraszam serdecznie!
Cenne jest takie historyczne podejście do nauki.
Świetny materiał, trudny, ale świetny. Widać włożony ogrom pracy.
Ważne żeby się dobrze oglądał.
Wspaniały film!! Więcej takich
Świetny odcinek! Nigdy nie słyszałem takiej historii atomu
Super odcinek! Działaj dalej!
Brawo! :-) lajkuję każdy odcinek, teraz już w ciemno, bo wszystkie są dobre.
Kawał wiedzy w pigułce. Dzięki!
super, odcinek.. czekam na kolejne, czasem mnie tu nie ma, ponieważ od jakiegoś czasu na fb oglądam "ciekawostki" jakie wrzucasz, pozdrawiam
Super, czekam na więcej.
Ja tez kiedyś chciałem wyjaśnić w krótkim filmiku jak działa Nurek Kartezjusza i musiałem dojść do tego skąd się bierze masa w ogóle i doszedłem do składników atomów i unitów.
piorun kulisty przedstawia nam w jaki sposób zbudowany jest atom, ponieważ piorun kulisty prezentuje atom po wybuchu atomowym. A skoro temperatura błyskawicy jest wyższa od wybuchu atomu dlatego rozmiary tego atomu są dużo większe. Gdy temperatura atomu ostygnie to wtedy piorun kulisty kurczy się do rozmiaru normalnego atomu i staje się niewidoczny dla nas.. Zobacz jak wygląda budowa atomu i jak działa atom.
th-cam.com/video/4Ee3izrP4q4/w-d-xo.html
Bardzo dobry film - powiedział bym genialny 👍
Wspaniały film. Na początek chemii w każdej szkole
Bardzo fajny film. Całkiem niedawno szukałem odpowiedzi na to pytanie :)
bardzo fajny odcinek, wszystko przejrzyście omówione.
Super. Kom dla zasięgów
Tyle pracy i nawet 1000 polubień nie ma, to smutne. Dzięki za świetny materiał.
Ja tam jestem zadowolony, zawsze znajdą się tacy co powiedzą dobre słowo.
Czekam na kolejne materiały.
Na pewno będą.
Bardzo lubie twoje filmy😊
10/10
świetny odcinek, dzięki
Super!!
Mega
Może być 😜 przekaz najważniejszy pozdrowionka
👍👍👍
Poszedł sub na zachętę
Dzięki. Pozdrawiam.
42:6.7 (477.1) Każdy atom ma nieco ponad 1/40.000.000 centymetra średnicy, podczas gdy elektron waży nieco więcej niż 1/2.000 najmniejszego atomu wodoru. Dodatni proton charakterystyczny jest dla jądra atomowego i chociaż może nie być większy od ujemnego elektronu, waży prawie dwa tysiące razy więcej.
42:7.2 (477.4) Elektrony krążą wewnątrz atomu wokół centralnego protonu, mając mniej więcej tyle samo miejsca, co planety, kiedy krążą wokół Słońca w Układzie Słonecznym. Pomiędzy jądrem atomowym a wewnętrzną orbitą elektronową istnieje relatywnie taka sama odległość, proporcjonalna do rzeczywistej wielkości, jaka jest między wewnętrzną planetą, Merkurym, a waszym Słońcem.
42:7.3 (477.5) Prędkości obrotowe elektronów wokół osi, jak również ich prędkości orbitalne wokół jądra atomowego, przekraczają ludzką wyobraźnię, nie mówiąc już o prędkościach ich komponentów - ultimatonów. Dodatnie cząstki radu wylatują w przestrzeń z prędkością szesnastu tysięcy kilometrów na sekundę, podczas gdy cząstki ujemne osiągają prędkość zbliżoną do prędkości światła.
42:7.8 (478.2) Podczas gdy atomy mogą posiadać od jednego do stu orbitujących elektronów, w większych atomach zaledwie dziesięć zewnętrznych elektronów krąży wokół centralnego jądra jako niezależne i odrębne ciała, poruszając się integralnie i zwarcie po precyzyjnych i konkretnych orbitach. Trzydzieści elektronów, najbliższych centrum, trudno jest zauważyć i wykryć jako oddzielne i zorganizowane ciała. Taka sama, względna proporcja zachowania się elektronów w zależności od bliskości jądra, obowiązuje we wszystkich atomach, niezależnie od liczby elektronów w nich zawartych. Im bliżej jądra tym mniej elektronowej indywidualności. Falopodobne strefy energii elektronu mogą się tak rozprzestrzeniać, że całkowicie zajmą niższe orbity atomowe; odnosi się to zwłaszcza do elektronów najbliższych jądra atomowego.
42:7.9 (478.3) Trzydzieści najbardziej wewnętrznych, orbitujących elektronów, posiada swą indywidualność, ale ich systemy energii mają tendencje do mieszania się, rozciągając się od elektronu do elektronu i prawie od orbity do orbity. Następne trzydzieści elektronów stanowi drugą rodzinę czy strefę energii i posiada zaawansowaną indywidualność ciał materialnych, rozciągających pełniejszą kontrolę nad towarzyszącymi im systemami energii. Następne trzydzieści elektronów jeszcze bardziej zindywidualizowanych - trzecia strefa energii - krąży po wyraźniejszych i bardziej konkretnych orbitach. Dziesięć ostatnich elektronów, istniejących tylko w najcięższych pierwiastkach, posiada znaczny stopień niezależności i dlatego są one zdolne do ucieczki, bardziej czy mniej swobodnej, spod kontroli macierzystego jądra. Przy minimalnych zmianach temperatury i ciśnienia, członkowie czwartej i najbardziej oddalonej od środka grupy elektronów będą uciekać z objęć centralnego jądra, jak to widać na przykładzie samoistnego rozpadu uranu i podobnych mu pierwiastków.
42:8.3 (479.1) W jądrze atomu naładowane protony i pozbawione ładunku neutrony trzymają się razem dzięki obustronnemu działaniu mezotronu, cząstki materii 180 razy cięższej od elektronu. Bez takiej adaptacji ładunek elektryczny protonu mógłby zniszczyć jądro atomowe.
42:8.4 (479.2) Przy istniejącej budowie atomu ani siły elektryczne ani grawitacyjne nie utrzymałyby spoistości jądra. Integralność jądra jest zachowywana dzięki spajającemu działaniu mezotronu, który może trzymać razem cząstki naładowane i nie naładowane, w wyniku wyższej mocy siły-masy i dzięki dodatkowej funkcji, która powoduje ciągłą zamianę miejsc protonu i neutronu. Mezotron sprawia, że ładunek elektryczny cząstek jądra jest nieustannie przerzucany w tę i z powrotem pomiędzy protonami i neutronami. W jednej, nieskończenie małej części sekundy, dana cząstka jądrowa jest naładowanym protonem a w następnej już neutronem bez ładunku. I takie, kolejne zmiany statusu energii, są tak niewiarygodnie szybkie, że ładunek elektryczny pozbawiony jest wszelkich możliwości działania w charakterze wpływu rozrywającego. Tak więc mezotron działa jako „nosiciel energii”, jako cząstka, która w znacznym stopniu przyczynia się do stabilizacji jądrowej atomu.
42:8.5 (479.3) Obecność i funkcjonowanie mezotronu wyjaśnia również inną atomową zagadkę. Kiedy atomy zachowują się radioaktywnie, emitują znacznie więcej energii niż można się tego spodziewać. Ta nadwyżka promieniowania pochodzi z rozbicia mezotronowego „nosiciela energii”, który, skutkiem tego staje się zwykłym elektronem. Rozpadowi mezotronowemu towarzyszy emisja pewnych małych, nie naładowanych cząstek.
🍓
jasno i konkretnie, bez zbytniej gmatwaniny
👍
Bardzo ładne streszczenie; mam tylko wątpliwości, czy mechanika macierzowa Heisenberga nie powstała w ’25, jeszcze przed mechaniką falową Schrödingera.
Tak, powstała w 1925 roku, przed mechaniką falową.
13:15 brakuje mi bardzo informacji skąd wzięły się te jądra helu i skąd wiedzieli, że to jądra helu
Jądra helu w takich eksperymentach to promieniowanie alfa. W tamtych czasach jako ich źródła używało się pierwiastków radioaktywnych zapewne radu albo polonu.
A czy fizycy odkryli już MEZOTRONY? - cząstki spajające jądro atomowe, powodujące cykliczne zmiany protonu w neutron i na odwrót, co tłumaczy brak rozpadu jądra??? A może fizycy odkryli budulec - ULTIMATONY ??? ( 1 elektron składa się ze 100 ultimatonów )
🍓
😀😀😀
tak wygląda atom W bardzo dużym powiększeniu.
th-cam.com/video/4Ee3izrP4q4/w-d-xo.html
Niema o kwarkach😢
Jaki mądry murzyn, ojej
trochę za szybko mówisz (lub czytasz), informacji zawartych w filmie jest dużo, lepiej będzie się oglądało jak zwolnisz tępo ale merytorycznie jest ok
* tempo, poprawiam błąd
Może dobrze, że szybko czyta, dla niektórych dzisiaj wiele osób ma problem, żeby obejrzeć te 20 min.
To jest stary problem, niektórzy piszą, że za szybko, inni, że za wolno. Staram się jak najlepiej.
@@eureka_kanal dla mnie akurat nie ma to znaczenia, ważne, że wszystko bardzo wyraźnie i zrozumiale jest mówione. Aaa i nadrabiam polubienia w pana filmikach bo zawsze po prostu zapominam>
To gwałt na moim umyśle
Gacie weszły mi między pośladki
Utkwiły w rowie i nie mogę wyciągnąć
Nie wiem co robić