Harvard University Entrance Aptitude test Tricks

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 พ.ย. 2024

ความคิดเห็น • 15

  • @tassiedevil2200
    @tassiedevil2200 หลายเดือนก่อน +2

    It would be illuminating to explain where the spurious answer arises from the solution scheme presented. In general for such a problem it is helpful to specify if a real solution is sought and (as several others have commented) to look at the domain of the function and also (from simple bounds) where the solution could lie i.e . between zero and +1.

    • @superacademy247
      @superacademy247  หลายเดือนก่อน

      Great question, you're right, it's important to analyze the domain and potential solutions for these types of problems! 👏😊

  • @ManojkantSamal
    @ManojkantSamal 29 วันที่ผ่านมา +1

    Respected Sir, Good evening

    • @superacademy247
      @superacademy247  28 วันที่ผ่านมา

      Good evening to you too! 😎Thanks for tuning in! I’m glad you’re here! 🔥

  • @ahsgdf1
    @ahsgdf1 หลายเดือนก่อน +1

    The equation in the announcing picture is different from the one in the solution.
    It took me some time so solve (x-x^2)^(1/2)+(x^2-x^3)^(1/2) = 1 - and show that there is no real root.
    :-((

    • @superacademy247
      @superacademy247  หลายเดือนก่อน

      It's was an error. Thanks for bringing it to my attention 🙏🙏🙏

  • @ManojkantSamal
    @ManojkantSamal 29 วันที่ผ่านมา

    ^=read as to the power
    *=read as square root
    As per question
    *{x-(x)^3}+*{x^2-x^3}=1
    Let,
    a^2= x-x^3, b^2= x^2-x^3
    So,
    *(a^2)+*(b^2)=1
    a+b=1......eqn1
    a=1-b
    ab=(1-b)×b=b-b^2.......eqn2
    According to the law
    (a-b)^2=(a+b)^2-4ab
    =1- {4×(b -b^2)}
    =1-4b+4b^2
    =4b^2- 4b +1
    =(2b-1)^2
    So,
    *(a-b)^2=*(2b -1)^2
    a -b = 2b - 1........eqn3
    Eqn1 + eqn3
    a+b+a-b=1+2b - 1
    2a= 2b
    a= b
    Squaring the equation
    a^2 = b^2
    X - x^3 = x^2 - x^3
    X = x^2
    X -x^2 =0
    X(x-1)=0
    X=0 & x-1=0
    X=0 & x=1

  • @irenehartlmayr8369
    @irenehartlmayr8369 หลายเดือนก่อน

    B B B !!!!!!!!

  • @dan-florinchereches4892
    @dan-florinchereches4892 หลายเดือนก่อน

    ^1/2 implies square root so
    x-x^3>=0
    X€ [-inf,-1] + [0,1]
    Also x^2-x^3>=0 x^2(1-x)>=0
    So X € (-inf,1] from this condition
    Overall X a=b=1
    So we rewrite equation as
    (X^2+x-1)^2=0
    X1=(-1-√5)/2~=-1.608 double root and
    X2=(-1+√5)/2~=.608 double root
    Both of then satisfy the domain conditions.
    Also x^2=1-x identity holds
    Substituting in original EQ :
    √(x-x^3)=√(x-x+x^2)=x
    √(x^2-x^3)=√(x^2-x+x^2)=√(x^2-x+1-x)=1-x
    So X+1-x=1 true
    Now this verification leads to some interesting observations. We could replace the original equation by
    y^2=x-x^3
    (1-y)^2=x^2-x^3 y^2-2y+1=x^2-x^3
    Subtracting
    1-2y=x-x^2 doesn't make solving any easier than before
    Dividing equations
    (-1+1/y)^2=X/(1+X) doesn't seem particularly useful

    • @tassiedevil2200
      @tassiedevil2200 หลายเดือนก่อน

      @dan-florinchereches4892 How do you resolve the fact that your solution X1 is not a solution to the original problem? The original expression is clearly greater than 1 for all negative real x < -1.
      In your use of the "identity" for solutions, X^2=1-X , when substituting back I think you need to beware that sqrt[X^2] is not X for X

    • @dan-florinchereches4892
      @dan-florinchereches4892 หลายเดือนก่อน +1

      @@tassiedevil2200 nice point. I didn't check that the first radical is increasing from 0 while the second is increasing from √2

  • @irenehartlmayr8369
    @irenehartlmayr8369 หลายเดือนก่อน +1

    B IS NOT PRONOUNCED AS A P !!!!!!!! Are you hard of hearing !!!!???????.

  • @taniacsibi6879
    @taniacsibi6879 หลายเดือนก่อน

    Enunt: (x-x^3) ori (x-x^2). ……????????????in rest ok