Can you solve this? | iota maths problem | Oxford entrance exam question

แชร์
ฝัง
  • เผยแพร่เมื่อ 22 ธ.ค. 2024

ความคิดเห็น • 343

  • @MrAlvaroxz
    @MrAlvaroxz 2 หลายเดือนก่อน +120

    It's eassier if you use the polar form:
    i=e^[(π/2)+2kπ]i
    i^½=e^(π/4+πk)i
    i^½=cos(π/4+πk)+i×sin(π/4+πk)
    Now if k is even, then:
    i^½=sqrt(½)+sqrt(½)i
    If k is odd, then:
    i^½=-sqrt(½)-sqrt(½)i
    Then:
    i^½=±sqrt(½)±sqrt(½)i

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  2 หลายเดือนก่อน +5

      Nice Approach 👍

    • @dansf2
      @dansf2 2 หลายเดือนก่อน

      that's pretty nice

    • @KipIngram
      @KipIngram 2 หลายเดือนก่อน +2

      Yes, this is generally true, but in this case the conversion to rectangular is trivially easy "in-head" work.

    • @bhobba
      @bhobba 2 หลายเดือนก่อน +1

      That's how I did it.. Euler strikes again. It's like i^i

    • @thomasgreene5750
      @thomasgreene5750 2 หลายเดือนก่อน +5

      Right approach, but the two solutions are +sqrt(1/2)*(1+i) and -sqrt(1/2)*(1+i)

  • @medboker
    @medboker 2 หลายเดือนก่อน +74

    Your solution gives the impression there are 4 solutions where as there only 2 solutions. You have to notice that an and b have the same sign. And therefore leaving only two solutions

    • @rvqx
      @rvqx 2 หลายเดือนก่อน +16

      So the answer is: √i = ±( √2/2 + i√2/2 )
      a and b have the same sign since 4:25 2ab=1

    • @rainerzufall42
      @rainerzufall42 2 หลายเดือนก่อน +7

      @@rvqx Indeed, the other two square to -i because of 2ab=-1. But only one of them is the principal root, that is
      √i = 1/2 √2 + i/2 √2

    • @rainerzufall42
      @rainerzufall42 2 หลายเดือนก่อน +4

      In other words: √i = cos(45°) + i sin(45°)

    • @rainerzufall42
      @rainerzufall42 2 หลายเดือนก่อน +2

      Or even √i = (1 + i) / |1 + i|

    • @ManjulaMathew-wb3zn
      @ManjulaMathew-wb3zn 2 หลายเดือนก่อน +3

      Since 2ab is positive an and be should have the same sign. Also since an and b are real the complex 4th roots are ignored.
      Having said all that polar form is the way to go.

  • @okaro6595
    @okaro6595 2 หลายเดือนก่อน +16

    What angle when doubled produces 90 degrees? Squaring doubles the angle.

  • @dimetree8496
    @dimetree8496 2 หลายเดือนก่อน +26

    Frankly, why it has to go through these many steps? You had a^2-b^2=0 and 2ab=1.
    From first equation you get a=+-b and from second, you get a^2=1/2, i.e., a=+-root over half.

    • @charleslivingston2256
      @charleslivingston2256 17 วันที่ผ่านมา

      From the second equation you also get that a and b are the same sign (both positive or both negative)

  • @SanePerson1
    @SanePerson1 2 หลายเดือนก่อน +32

    i = e^{iπ/2) ⇒ √i = ±exp(iπ/4) = ±(cos(π/4) + isin(π/4)) = ±(1/√2)(1 + i)
    Introducing the polar form of complex numbers makes this exercise trivial.

    • @rainerzufall42
      @rainerzufall42 2 หลายเดือนก่อน +2

      Only one of these two (the positive one) is a principal root of i!

    • @nickdsp8089
      @nickdsp8089 หลายเดือนก่อน

      ​@@rainerzufall42 Yes but the question was not to find the principal one. I can accept both of them.

    • @rainerzufall42
      @rainerzufall42 หลายเดือนก่อน +1

      @@nickdsp8089 No, you can't! Sqrt(x) is per definitionem the principal (in IR positive) root and only this one. The other root is called - sqrt(x). Both + sqrt(x) and - sqrt(x) build the set of 2 real roots y_1 / y_2 of y^2 = x > 0 (1 root for x = 0, no real root for x < 0).

    • @philippereverdiau1087
      @philippereverdiau1087 19 วันที่ผ่านมา

      @@rainerzufall42 Sqrt(x) is per definitionem the principal (in IR positive) root and only this one : only when x in IR+

    • @rainerzufall42
      @rainerzufall42 19 วันที่ผ่านมา +1

      @@philippereverdiau1087 That's exaxtly what I said! Real sqrt : IR*+ -> IR*+
      Most people can understand this one.
      It because a little more complicated when talking about complex sqrt, but it is as clear!
      sqrt : IC -> { z € IC | Re z > 0 ∨ (Re z = 0 ∧ Im z >= 0) }
      Or with polar coordinates: sqrt : { (r, φ) € R*+ × (-π/2, π/2] } -> { (r, φ) € R*+ × (-π/4, π/4] }.

  • @actuariallurker9650
    @actuariallurker9650 2 หลายเดือนก่อน +97

    Use polar coordinates and solve the problem in 3 lines - what a waste of time

    • @rohei1681
      @rohei1681 2 หลายเดือนก่อน +4

      Base knowledge of complex analysis

    • @TmyLV
      @TmyLV 2 หลายเดือนก่อน

      @@rohei1681 YES!! The guy presenting is REALLY STUPID!!

    • @pdfads
      @pdfads หลายเดือนก่อน +7

      And the way they wrote the final answer makes it look like there are four solutions. Should have written +-(1+i)/sqrt(2) , to avoid confusion.

    • @CaspaB
      @CaspaB หลายเดือนก่อน +4

      Agree. I did it in my head, thanks to polar coordinates, learnt 50+ years ago.

    • @offgrid-bound
      @offgrid-bound หลายเดือนก่อน

      Yup…

  • @christianlopez1148
    @christianlopez1148 2 หลายเดือนก่อน +34

    i=exp(i*pi/2), then (i)**(1/2)=exp(i*pi/4)=cos(pi/4)+isen(pi/4)=root(2)/2*(1+i)

    • @winstonridgewayhardy
      @winstonridgewayhardy 2 หลายเดือนก่อน +3

      This is only the solution from the first quadrant. The other one is in quadrant 3: exp(i*5pi/4) or equivalently -root(2)/2(1+i)

    • @rainerzufall42
      @rainerzufall42 2 หลายเดือนก่อน +3

      @@winstonridgewayhardy The principal root of i IS the one in the first quadrant!
      The value in the third quadrant solves x² = + i, but only x = √i = + (1 + i) / √2 is valid.
      Just like √2 = + 1.414... only, although (- 1.414...)² = 2 as well!
      There's a stark difference between y = √x and y² = x. The first form has one solution for y, the second form has 2!

    • @e.nicolasleon-ruiz5491
      @e.nicolasleon-ruiz5491 หลายเดือนก่อน

      Show me some real life use for this problem, and I won't call this a pure self-satisfaction exercise.

  • @keeteo82
    @keeteo82 2 หลายเดือนก่อน +9

    By the definition of the the sqrt sign : sqrt(z) is THE principal square root of z, which is unique. For example, sqrt(1)=1 not -1, and sqrt(i)=1/sqrt(2) + i*sqrt(2), Though the equation z^2 = i has two solutions.

    • @rainerzufall42
      @rainerzufall42 2 หลายเดือนก่อน +4

      Exactly! Only the solution in the first quadrant IS √i.

    • @PlasmaFuzer
      @PlasmaFuzer หลายเดือนก่อน +1

      I was thinking the same thing. Not to mention the polar coordinate representation. Using a + bi is so much more cubersome.

    • @jean-francoisgeiger4684
      @jean-francoisgeiger4684 18 วันที่ผ่านมา

      D'accord pour la remarque sur la racine unique. Malheureusement, votre solution est fausse : il vous
      faut remplacer (*) par(/).

  • @bookert2373
    @bookert2373 2 หลายเดือนก่อน +5

    This video could be used in high school as a teaching tool to illustrate the hard way to solve this problem and then show the way a mathematician would easily solve it using the fact that angles add when multiplying complex numbers. I think Oxford would be looking for the second approach.

  • @paulcohen6727
    @paulcohen6727 2 หลายเดือนก่อน +18

    I saw this title last night and found the answer in a minute or two while I was falling asleep, using de Moirvé's Theorem: i^1/2 = r^1/2 (cis @)^ 1/2 or 1^1/2(cos 1/2(cos 90/2 + i sin 90/2) = sqrt(2)/2 + i sqrt(2)/2. All this spinning 0f your algebraic wheels is a waste of time when you can get the answer directly, visualizing the unit circle.

    • @osmanhussein3893
      @osmanhussein3893 2 หลายเดือนก่อน +1

      Exactly! That is what i did without even using a pen and paper!

    • @briansauk6837
      @briansauk6837 2 หลายเดือนก่อน

      Indeed. Just imagine how long i^i would take using some convoluted approach like this...

    • @mieses-te9yl
      @mieses-te9yl 2 หลายเดือนก่อน +1

      A little bit emphatic, no?

  • @pnachtwey
    @pnachtwey 2 หลายเดือนก่อน +4

    Think of rotating vectors. I is a vector of length on pointing up at 90 degrees so rotate it right 45 degrees. This provides the obvious solution.

  • @Jeph629
    @Jeph629 2 หลายเดือนก่อน +3

    If you're a "math" beast, then you know it's a "math" problem. Understanding the finer points of language will generally get you farther than knowing the most esoteric math.

  • @renesperb
    @renesperb หลายเดือนก่อน +3

    If you write i = exp[ i π/2] ,then it follows that √ i = exp[ i π/4]= cos π/4 +i sin π/4 = √2/2*(1+i) . Note : there is only one value for √ i .There would be two values if you solve z^2 = i .

  • @jmguiche9234
    @jmguiche9234 2 หลายเดือนก่อน +4

    It is really easy for an Oxford exam !

  • @KipIngram
    @KipIngram 2 หลายเดือนก่อน +6

    Of course - that can be done in one's head in seconds. It's sqrt(2)/2 + i*sqrt(2)/2 and -sqrt(2)/2 - i*sqrt(2)/2.

    • @rainerzufall42
      @rainerzufall42 2 หลายเดือนก่อน +2

      Only the first one is the principal root √i. As an Oxford student, we should know that!

  • @everettmcinnis5858
    @everettmcinnis5858 หลายเดือนก่อน +2

    Here's a method that works for any complex number. Express the complex number in polar form. To get the square root of it, take the square root of the magnitude, and divide the angle by 2. Be sure to use positive angles only.

  • @BollyFan2-ue6cq
    @BollyFan2-ue6cq 2 หลายเดือนก่อน +5

    Technically the way you have written the answer it is 4 answers, but really there should only be 2 answers.
    I think someone in the comments below mentions answers to be +/- (1/sqrt(2)) (1 + i)
    That is just 2 answers. The combos where a and b have different signs are not valid I assume.

    • @RexxSchneider
      @RexxSchneider หลายเดือนก่อน

      The combos where a and b have different signs, i.e. ±(1-i)/√2, are the square roots of -i. However, the radical sign conventionally imples the principal root which would be √(-i) = (1-i)/√2.

  • @winstonridgewayhardy
    @winstonridgewayhardy 2 หลายเดือนก่อน +1

    I do appreciate your clear and easy to follow format... but yes, a small error that you left both + and - signs within the final answer... since there are only 2 answers which as people below have noted is clear from polar form on the unit circle in terms of rotations from e^(iPi/4) or e^(i5Pi/4) and so: In rectangular form just 2 roots of sqrt(i): sqrt(2)/2 + i sqrt(2)/2 and -sqrt(2)/2 - i sqrt(2)/2

  • @lesbbsayan7212
    @lesbbsayan7212 2 หลายเดือนก่อน +2

    if a²-b²=0 we have (a+b)(a-b)=0
    so a+b=0 or a-b=0
    we get a=-b or a=b
    so 2ab=1 is 2a²=1 or -2a²=1
    a²=1/2 or a²=-1/2
    but if a is not a complex number we can't have a²=-1/2
    so a+b is not 0 and this is a-b=0
    a=sqrt(1/2)=+/-1/sqrt(2)
    so b=+/-1/sqrt(2)
    we have sqrt(i)=+/-(1/sqrt(2)+i/sqrt(2))
    i think this is better than use 2ab=1 because we don't have to use fraction sum.

  • @jessenemoyer1571
    @jessenemoyer1571 หลายเดือนก่อน +1

    ±(1 + i) /√2 is immediate if you see that i = e^iπ/2 hence √i = ± e^iπ/4

  • @pbierre
    @pbierre 2 หลายเดือนก่อน +1

    It's easy if you know that, plotted in the 2D plane, a complex number's sqrt is rotationally 1/2-way back to the positive real axis. Since i points straight up on the positive imaginary axis, rotationally 1/2 way back has to be the composite √.5 + √.5i. If you multiply (√.5 + √.5i)(√.5 + √.5i) using FOIL, the result you get is i. This is the positive square root.

  • @gilbertogarbi4479
    @gilbertogarbi4479 2 หลายเดือนก่อน +8

    Much simpler using Euler's equation.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  2 หลายเดือนก่อน +1

      How...?

    • @eng954
      @eng954 2 หลายเดือนก่อน +1

      @@MathBeast.channel-l9i (cospi/2 +isinpi/2)^^1/2 then it can be solved easely by dividng the pi to 2

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  2 หลายเดือนก่อน

      @@eng954🆗 👍

    • @tommyliu7020
      @tommyliu7020 2 หลายเดือนก่อน

      @@MathBeast.channel-l9ijust realize that square root of -1 is half of the rotation from 1 to -1, so the square root of i is half of the rotation from 1 to i, which correspondents to when theta = pi/4 on the unit circle. There you’ve gotten your answer.

  • @thomasharding1838
    @thomasharding1838 2 หลายเดือนก่อน +4

    "Let's Suppose" that i = ±√-1 then can we "suppose" that √i = ± fourth root of -1 ‽

    • @itsmetrendy8471
      @itsmetrendy8471 2 หลายเดือนก่อน +3

      exactly what I was thinking

    • @thomasharding1838
      @thomasharding1838 2 หลายเดือนก่อน +1

      @@itsmetrendy8471 The problem with our thinking is that it doesn't take 10 minutes to express it.

    • @itsmetrendy8471
      @itsmetrendy8471 2 หลายเดือนก่อน

      @@thomasharding1838 true because I just saw the way how the normal expression just needs another root on the right side and simplified it

  • @Matteo-nt3qr
    @Matteo-nt3qr 2 หลายเดือนก่อน +2

    Sqrt i = cos(pi/2)+1[sin(pi/2)]

  • @mandolinic
    @mandolinic หลายเดือนก่อน +1

    This implies there are four square roots. Other sources I've seen say it has two.
    I think that (1-i)/√2 = -i (and not i as implied by the derived answer).

    • @RobbieHatley
      @RobbieHatley 15 วันที่ผ่านมา +1

      Yes. i has only two square roots: +1/√2+i/√2 and -1/√2-i/√2. The other two "roots" given by this video are false, because (-1/√2+i/√2)² = -i and (+1/√2-i/√2)² = -i; neither is equal to i.

  • @martinrosenau478
    @martinrosenau478 2 หลายเดือนก่อน +19

    Again the same mistake I already commented in another video this week:
    √4 is not ±2 (although (-2)² is also 4) but √4 is defined as +2!
    This is true for all complex numbers (including real numbers):
    With exception of the value x=0, there are exactly two values y that satisfy y²=x, but only one of the two values is defined as the square root √x.
    According to the German language Wikipedia, it is the value with the positive real part (for this reason, √4 is +2 (which is equal to +2+0i) and not -2 (which is equal to -2+0i)); and if the real part of the two values y is zero, it is the value with the non-negative imaginary part (for this reason, √(-1) is +i but not -i).
    For this reason, √i is only (√2/2)(+1+i) but not (√2/2)(-1-i).

    • @KipIngram
      @KipIngram 2 หลายเดือนก่อน +3

      They're both square roots. I've always been taught to call the one you identified the "principle square root."

    • @martinrosenau478
      @martinrosenau478 2 หลายเดือนก่อน +3

      @@KipIngram Because language may play a role here, I also checked the English language Wikipedia:
      If I understand the Wikipedia text correctly, both "+√x" and "-√x" are called "square roots" in English language; however, only one of the two values can be written as "√x" while the other one must explicitly be written as "-√x".
      I don't know about the original Oxford question, but in the video the question is: "Find √i", not "Find the square root of i".

    • @tontonbeber4555
      @tontonbeber4555 2 หลายเดือนก่อน +1

      ​​@@radupopescu9977x^(1/n) is an expression, a mathematical operation. It as only one value ... By the way, following your "theory", how many values has x^pi ?

    • @tontonbeber4555
      @tontonbeber4555 2 หลายเดือนก่อน +1

      @@radupopescu9977 so then you cannot calculate anything in complex numbers. Everything is equal to everything ... let's be serious ... x^y must have only one value.

    • @tontonbeber4555
      @tontonbeber4555 2 หลายเดือนก่อน +2

      @@martinrosenau478 In fact my comment is more general ... even if an equation can have more than one solution, and eventually an infinity, an operation should only return one value, which is normally the main solution of the equivalent equation. Otherwise it's impossible to calculate anything ...

  • @superchuck3259
    @superchuck3259 8 วันที่ผ่านมา +1

    Define "I" as X Squared. So then the square root of X Squared is X. Answer is X if you define "I" as X^2. But that is just not making the assumption that "I" means imaginary number.

  • @kpi6438
    @kpi6438 2 หลายเดือนก่อน +2

    A strange method of finding a solution! By the time such a problem appears (in mathematics, physics...), students already know enough about complex numbers and their exponential representation to solve the problem easily and quickly.

  • @BigEaster
    @BigEaster 2 หลายเดือนก่อน +5

    Never heard of De Moivre formula? Immediate solution.

  • @dariuszb.9778
    @dariuszb.9778 2 หลายเดือนก่อน

    It's extremely easy if you know what Euler's identity means and how you do powers and roots on a complex coordinate system.

  • @seoul90
    @seoul90 2 หลายเดือนก่อน +1

    Thank you interesting your solution

  • @EduardoSousaSaraiva-p6i
    @EduardoSousaSaraiva-p6i 2 หลายเดือนก่อน

    Using the exponential format: exp(j(pi/4 + k pi)) k element of Z

  • @fernandoderoque1920
    @fernandoderoque1920 2 หลายเดือนก่อน +1

    sqrt(i) = i^(1/2) =
    e^i(π/2+2 nπ)^(1/2)
    =e^i(π/4+nπ)
    n in Q

  • @Heisemberg08
    @Heisemberg08 2 หลายเดือนก่อน

    Power rule of complex number in the trigonometric form. Z^n = p^n[cos(n*x)+isen(n*x)]. The argument (x) and the module p is easier to identify, once that z = i , p=1 and x= pi/2 (90 degrees), with n=1/2. Just substitute on the trigonometric form and it's done. Dont need to use all that way in the algebraic form. The answer is √2/2 +i√2/2. The answer for (-i)^1/2 is √2/2 - i√2/2. Don't forget the odd/even function rule for cos and sin.

  • @yairidan5007
    @yairidan5007 2 หลายเดือนก่อน +2

    = + - (cos 45 + i sin 45)

  • @matei_woold_wewu
    @matei_woold_wewu 21 วันที่ผ่านมา +1

    1/√2+i1/√2 or √2/2+i√2/2 they are the same

  • @moebadderman227
    @moebadderman227 2 หลายเดือนก่อน +1

    let a + bi = √i
    then (a + bi)² = i, so (a² - b²) + 2abi = i
    therefore ab = ½ so _a_ and _b_ must have the same sign,
    and a² = b², so a = b = ±√½
    so the two solutions are √i = √½ + (√½)i, and -√½ -(√½)i

  • @topquark22
    @topquark22 หลายเดือนก่อน

    Easy if you visualize. No calculation required. Using Euler's formula, i = e^i(i pi/ 4) which is the point on the unit circle at 90 degrees, so sqrt(i) = e^(i pi/8), which is the point on the unit circle at 45 degrees, or (sqrt(2), sqrt(2)). This represents sqrt(2) + i sqrt(2). This is the standard convention, that sqrt() has 1 solution, just as with real numbers. But you could also say another solution is -sqrt(2) - i sqrt(2), which is the point on the unit circle at 225 degrees.

  • @rogermoure1
    @rogermoure1 14 วันที่ผ่านมา +1

    I m a beginner. Can you explain why you suppose that Vi=a+bi?

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  13 วันที่ผ่านมา

      Because:
      Firstly, complex numbers can be added, subtracted, multiplied and divided easily in this form.
      Secondly, it separates real and imaginary components as solution proceeds.
      Hope you got it.🙂

  • @ManojkantSamal
    @ManojkantSamal 2 หลายเดือนก่อน +2

    Respected Sir, Good morning

  • @AkiraNakamoto
    @AkiraNakamoto 2 หลายเดือนก่อน +2

    I use the geometric approach to solve the problem in 30 seconds.
    i is actually THE OPERATION of counter-clockwise rotation of 90 degrees on the complex plane.
    sqrt(i) is actually THE OPERATION such that you do sqrt(i) twice, it will rotate counter-clockwisely 90 degrees.
    This corresponds to two solutions: the 45-degree CC rotation (i.e., 1/sqrt(2) + i/sqrt(2)) and the 215-degree CC rotation (i.e., -1/sqrt(2) - i/sqrt(2)).
    There are only these two possible solutions on the complex plane. Therefore, your answer giving 4 solutions is not right.

    • @AkiraNakamoto
      @AkiraNakamoto 2 หลายเดือนก่อน +2

      typo: 215 -> 225.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  2 หลายเดือนก่อน

      Boss🫡
      You logic is😇

    • @steve_s9412
      @steve_s9412 2 หลายเดือนก่อน

      Yes, that's how I did it. Once you realise that the required operation is a 45 degree rotation then it's obvious from pythagoras that the real and imaginary parts are both root 2 over 2.

  • @laogui2425
    @laogui2425 หลายเดือนก่อน

    using r*cis(θ) works well, I suggest, and gives at once
    sin^2(θ)=cos^2(θ) and 2r*sinθcosθ=1
    so r = 1 and θ=m*pi/4 with m in (1,3,5,7)

    • @RexxSchneider
      @RexxSchneider หลายเดือนก่อน

      Not well enough, it seems. The expression exp(mπi/4) where m ∈ { 1, 3, 5, 7 } represents four values. Two of these (m=1, 5) represent the two square roots of i. The other two (m=3, 7) represnt the two square roots of -i. Only the one where m=1 represents the principal value of the square root of i denoted by √(i). And exp(πi/4) evaluates to (1+i)/√2.

  • @Arcangelnino
    @Arcangelnino 2 หลายเดือนก่อน +1

    but why is a^2 - b^2=0 and i^1/2= a + bi? these are only supositions and theres no way to prove it, im new to complex numbers so tell me if im wrong plz

  • @harisatya5282
    @harisatya5282 2 หลายเดือนก่อน +3

    i=(1/2)(2i)
    =(1/2)(1² +2×1×i+i²)
    =(1/2)(1+i)²
    =[{1/sqrt(2)}(1+i)]²
    => sqrt(i)=±[{1/sqrt(2)}(1+i)]

    • @iran-sweden
      @iran-sweden 2 หลายเดือนก่อน +1

      you missed i=(-1/2)(-2i), so we have 4 answeres for this question, two other answers are ±[{1/sqrt(2)}*i(1+i)] =±[{1/sqrt(2)}(1-i)]

    • @harisatya5282
      @harisatya5282 2 หลายเดือนก่อน

      @@iran-sweden
      👍 💗

  • @janejohnson8353
    @janejohnson8353 2 หลายเดือนก่อน +1

    This problem took forever. How long do students have to complete the entrance test? As stated below, there are quicker and easier ways to do it.

  • @adgf1x
    @adgf1x 2 หลายเดือนก่อน +4

    i^1/2=(-1)^1/4

    • @abrahamdiazdeleoncamou4764
      @abrahamdiazdeleoncamou4764 29 วันที่ผ่านมา

      Yep, this is the solution requested, not the mathematical manipulation that produces a “solution” that is function of i….

  • @davesthinktank
    @davesthinktank หลายเดือนก่อน

    Plot in polar coordinates, take half, answer is obvious with almost zero work.

  • @ExpressStaveNotation
    @ExpressStaveNotation 2 หลายเดือนก่อน

    root of i = / (unit vector at 45 degrees). = (1 + i)/r2

  • @carystrunk5771
    @carystrunk5771 หลายเดือนก่อน +1

    Excellent! Utterly fascinating! I also like the fact that you do not speak during the explanations. In addition, your handwriting is pretty.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  หลายเดือนก่อน

      Thank you very much!
      For your excellent feedback ❤️

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  หลายเดือนก่อน

      Thanks for praiseing my handwriting.
      A positive feedback from audience means a lot for a content creator. It encourages and boosts the ability to provide a more better work.
      Thankyou Boss😊
      You are great
      God bless you 😇

  • @marksteers3424
    @marksteers3424 2 หลายเดือนก่อน +1

    The e to the i theta is simplest but even in your workings - when you get a2-b2 = 0 and we know that a and b are real then a = b. 2ab =1 becomes 2a2 =1 a = 1/ sqroot 2.

  • @wmatos
    @wmatos 2 หลายเดือนก่อน +2

    Thank you.

  • @phongsakbuala2483
    @phongsakbuala2483 2 หลายเดือนก่อน +1

    i^0.5 = e^(i(pi/4 +/- npi))= +/-(1+i)/sqrt2

  • @maamouhinda7722
    @maamouhinda7722 2 หลายเดือนก่อน +4

    You way it's ok but too hard and long.
    Short solution : i= e^(pi/2 +2 k.pi)
    i^1/2= e^(pi/4 + k.pi)=√2/2 +i.√2/2 for k=2.p and -√/2 -√2/2 for k= 2.p+1

  • @jeanrosw
    @jeanrosw 2 หลายเดือนก่อน

    i represents a vector in the plan xy having coordinates (0,1) racine of i is a vector having coordinate s racine(2)/2, racine(2)/2

  • @richardmullins44
    @richardmullins44 2 หลายเดือนก่อน

    on the argand diagram i is (1, pi/2), so sqrt of i is (1, pi/4). unfortunately my brain fades out at this point, and I can't think what the other value is? Would it be (1, pi/4 + pi)?

  • @Georgios-ft5nm
    @Georgios-ft5nm 2 หลายเดือนก่อน +2

    More interesting is the fact that i^i is real.

    • @carultch
      @carultch หลายเดือนก่อน

      And not just the principal solution either. ALL solutions of i^i are real numbers.

  • @IRVINMILLER
    @IRVINMILLER หลายเดือนก่อน +1

    A good understanding of math is illustrated by finding the simplest way of solving a problem. Though some times you want to solve it another way to build your confidence.. Most of your commentators realized i=e^((pi/2)i) and solved it in one or two steps. Try solving i^i with your technique.

  • @davidbrown8763
    @davidbrown8763 2 หลายเดือนก่อน +2

    Please ditch the horrible, unnecessary background noise.

  • @aljawad
    @aljawad 2 หลายเดือนก่อน +1

    Use Euler’s identity and Euler’s formula.

  • @shaileshdhuri4166
    @shaileshdhuri4166 2 หลายเดือนก่อน +1

    e^(pi *- i / 4 ) = (-1)^(1/4) == i ^ 0.5. One step solution

  • @rogermarshall2310
    @rogermarshall2310 2 หลายเดือนก่อน +1

    laboured!

  • @15_sayandeepkundu_ee28
    @15_sayandeepkundu_ee28 2 หลายเดือนก่อน +1

    I did it in DSP(Digital Signal Processing) in Engineering

  • @T121T
    @T121T หลายเดือนก่อน

    Is that four answers or two? Tye plus and minus parts?

    • @carultch
      @carultch หลายเดือนก่อน +1

      There are n qty nth roots, of any given complex number. That is, with the special exception of the roots of zero, all of which are trivially equal to zero.
      This means there are two square roots of i. The principal root is sqrt(2)/2 + i*sqrt(2)/2. The other square root is equal and opposite: -sqrt(2)/2 - i*sqrt(2)/2.

  • @alicengiz1861
    @alicengiz1861 2 หลายเดือนก่อน

    On the middle of the way it was already obvious that a=b and = +-1/2^0.5. you made a lot of redundant operations

  • @srinivasch-re2oq
    @srinivasch-re2oq 2 หลายเดือนก่อน

    √i = 1
    I ^4/4 which means i^2 = -1 and then square equal to 1
    Then √1 = 1
    So √i = 1

  • @johnvonhorn2942
    @johnvonhorn2942 2 หลายเดือนก่อน

    I'm going to "shoot in the dark" and say that. by definition i^2 = -1 so i = sqr(-1) so sqr(i) = -1 ^ (1/4)
    That's as good as I get and if it's not good enough then, "who cares?" cos I'm not Leonard Euler or Frederick "Wilhelm" Guass. I work at Poundland on the minimal wage and I'm even pretty terrible at that job.

  • @SuperHansburger93
    @SuperHansburger93 16 วันที่ผ่านมา +1

    What annoys me with this question is that it's not a question.
    The problem doesn't ask you to remove the root. You came up with it.
    If I saw this during an exam I would have no idea what the test even expects from me.
    There are no unknowns to find, no goal to achieve, no problem to solve.
    Just an expression that can stand just fine by itself and doesn't need rewriting.

  • @ВикторЛегеза-с3х
    @ВикторЛегеза-с3х 26 วันที่ผ่านมา +1

    Простіше так: cos(pi)=-1, or e^(pi*i)=-1. І далі шукати корінь четвертого степеня з цього виразу:
    X=e^((pi*i+2*pi*n)/4), n=0,1,2,3

  • @PaulEhmig
    @PaulEhmig 2 หลายเดือนก่อน +1

    e^(π/4)i

    • @PaulEhmig
      @PaulEhmig 2 หลายเดือนก่อน

      And the others adding 2kπ to pi/4

  • @Heisemberg08
    @Heisemberg08 2 หลายเดือนก่อน

    Negative part in power of complex numbers just appear if π/2

  • @Electronics4Guitar
    @Electronics4Guitar หลายเดือนก่อน +2

    I did this one in my head in about 30 seconds.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  หลายเดือนก่อน

      How...?
      Explain a bit...

    • @CaspaB
      @CaspaB หลายเดือนก่อน

      Me too. Polar coordinates.

    • @RexxSchneider
      @RexxSchneider หลายเดือนก่อน

      @@MathBeast.channel-l9i Recall that i = exp(πi/2). So √(i) = exp(πi/4) = cos(πi/4) + i.sin(πi/4) = 1/√2 + i/√2 = (1+i)/√2. I think 30 seconds is more time than is needed for that.

  • @Mesa_Mike
    @Mesa_Mike 2 หลายเดือนก่อน +6

    The square root symbol only wants the principal square root (i.e. the root with the non-negative Real component).
    So there is only one answer: √i = √2/2 + i√2/2

    • @videofountain
      @videofountain 2 หลายเดือนก่อน

      Please see the answer above yours.

    • @davidwright8432
      @davidwright8432 2 หลายเดือนก่อน +1

      Taking only the principal squrt is a convention, not logically mandated. It's not wrong to deal with both; just a violation of convention, not logic.

  • @philippedelaveau528
    @philippedelaveau528 หลายเดือนก่อน +1

    Il me semble qu’un candidat à Oxford ne sait pas résoudre ce problème immédiatement en une ligne par l’exponentielle, c’est qu’il n’à vraiment le niveau et sera illico recalé.

  • @gnanadesikansenthilnathan6750
    @gnanadesikansenthilnathan6750 2 หลายเดือนก่อน

    Nice

  • @bernhardkoster3095
    @bernhardkoster3095 หลายเดือนก่อน

    as it is already said!!! sqrt(i)=sqrt(exp(i*pi/2))=(exp(i*pi/2))^(1/2)=exp(i*pi/4) + Discussion that the complex root is ambigeous -> a one-liner!

  • @gabrielegaetanofronze6690
    @gabrielegaetanofronze6690 8 วันที่ผ่านมา +1

    Just use the exponential form and divide the exponent by 2 😁

  • @MYeganeh100
    @MYeganeh100 2 หลายเดือนก่อน +1

    👌

  • @iran-sweden
    @iran-sweden 2 หลายเดือนก่อน +1

    i=e^((2πn+π/2)i)=>i^(1/2)=e^((πn+π/4)i)=cos(πn+π/4)+isin(πn+π/4)=±(√2/2)(1 ± i) , n=1,2,3,4,...

  • @jsc3417
    @jsc3417 2 หลายเดือนก่อน +1

    Easy Sqart(i)=i^0.5

  • @philipkudrna5643
    @philipkudrna5643 26 วันที่ผ่านมา +1

    The denominators should have been rationalized…

  • @ColinPittendrigh
    @ColinPittendrigh 2 หลายเดือนก่อน +1

    I'll watch the algebra, but does the square root of an imaginary number make any sense? As a concept?

    • @thomasharding1838
      @thomasharding1838 2 หลายเดือนก่อน +2

      It requires some imagination but it is a valid imaginary concept.

    • @cmmaslanka
      @cmmaslanka 2 หลายเดือนก่อน

      Yes. "What number multiplied by itself gives you the desired number?"

    • @ColinPittendrigh
      @ColinPittendrigh 2 หลายเดือนก่อน

      @@cmmaslanka square root of -2 ...for me imaginary is a.....way of saying "does not exist"

    • @carultch
      @carultch หลายเดือนก่อน

      @@ColinPittendrigh Don't let the name deceive you, imaginary doesn't mean it it is just a mathematical toy that lacks application in the real world. The internet you are using and the power lines that supply electricity to your home, depend on complex numbers for the theory behind them. There are plenty of real world applications of imaginary and complex numbers.
      The name imaginary was coined by a critic of the idea, that somehow stood the test of time. Gauss proposed the name lateral numbers, which is a more accurate name for the concept, and would help give a more intuitive sense of what they are.

    • @carultch
      @carultch หลายเดือนก่อน

      @@ColinPittendrigh One application of imaginary numbers, is where they were discovered. Just as there's a quadratic formula, there's a cubic formula as well, that works as a master key for solving for x-intercepts of any cubic function. The problem is, that when there are three real solutions, it requires a detour to the complex numbers to find them.
      Here's a simple example:
      x^3 - 6*x + 4 = 0
      The solutions:
      x = +2, x = -1 - sqrt(3), x = -1+sqrt(3)
      You could easily get x=+2 using the rational roots theorem and some trial and error, and then polynomial division and a quadratic formula to find the others, but suppose it were a more complicated example where the roots weren't simple integers.
      The cubic formula:
      x^3 + p*x + q = 0
      D = (p/3)^3 + (q/2)^2
      x = cbrt(-q/2 + sqrt(D)) + cbrt(-q/2 - sqrt(D))
      Plug in p=-6 and q=+4:
      D = -4
      x = cbrt(-2/2 + sqrt(-4)) + cbrt(-2/2 - sqrt(-4))
      x = cbrt(-1 + 2*i) + cbrt(-1 - 2*i)
      Upon evaluating all 6 of the cube roots above, you'll find 3 conjugate pairs that add up to the three real solutions.

  • @belaidbezzaa7674
    @belaidbezzaa7674 16 วันที่ผ่านมา

    i = (cos(π]/2) + isinπ/2]) root of i = (cos(π]/4) + isinπ/4]) using de Moivre formula.

  • @prajaktab7010
    @prajaktab7010 2 หลายเดือนก่อน +4

    nice example. unic solution.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  2 หลายเดือนก่อน

      Thankyou so much 😊

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  2 หลายเดือนก่อน

      Thanks for your lovely feedback ☺️
      It means a lot for us.

    • @JunedHussain
      @JunedHussain 2 หลายเดือนก่อน

      I did not get a^2 - b^2 = 0 and abi=1i.
      What is the logic behind this

    • @dimetree8496
      @dimetree8496 2 หลายเดือนก่อน +1

      ​@@JunedHussain it means real number equals to real number and imaginary number equals to imaginary number. More conceptually whatever co-efficient an imaginary number has it will never be real number. Think like, 5 apples will never be 3 oranges.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  2 หลายเดือนก่อน

      @@dimetree8496 Appreciable 👍

  • @colinmccarthy7921
    @colinmccarthy7921 2 หลายเดือนก่อน

    If the square root of i = ?.You could say the square root of 1 = 1.This should help.

  • @lynnrathbun
    @lynnrathbun 2 หลายเดือนก่อน +3

    solve in 5 seconds in polar coordinates, in your head

    • @joeviolet4185
      @joeviolet4185 2 หลายเดือนก่อน

      I purport that out of the 3% who solved the problem, 97% again never heard about the complex number plane and how to do algebra on it.
      Thus, the simple solution is: Divide the angle the complex number 0+1·i forms with the positive real axis, which is 90° by 2 and take the square root of its absolute value, which is 1. Next draw the resulting complex number a+b·i, which then forms an angle of 45° and has an absolute value of 1. If you remember a little bit of what you learnt about sin and cos at school, you immediately know that a=b=1/sqrt(2), otherwise look it up in any formulary.

    • @henkn2
      @henkn2 2 หลายเดือนก่อน

      Can you demonstrate what happened in your head in those 5 seconds?

  • @konnischeller5185
    @konnischeller5185 2 หลายเดือนก่อน

    Das ist exakt der Lösungsweg, den ich in der 9. klasse Realschule gefunden hatte.

  • @KarlQuiah
    @KarlQuiah 24 วันที่ผ่านมา +1

    I honestly want to know where it's applied.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  24 วันที่ผ่านมา

      Almost all the math concepts are not applied in our daily life🫣
      Only the basic arithmetics are applicable in calculations😌

  • @daniel_feiglin
    @daniel_feiglin หลายเดือนก่อน

    Trivial! Draw a picture: sqrt(i) is clearly (1+i)/sqrt(2). It's simple geometry.

  • @somersetcace1
    @somersetcace1 หลายเดือนก่อน

    I know this is probably just laymen's ignorance, but this is what I never understood about advanced math. You have a problem to solve for and the answer is even more convoluted than the initial equation. It's doesn't appear you solved for the square root of i, but rather went through a lengthy process of restating the equation in a different way. We still don't know the value of `i,` or its square root. So, what's the point of it, other than a way of testing ones ability to rearrange equations, and/or apply mathematical theorems? I suppose that's fine for a college entrance exam, but I see no practical application.

    • @moonshade9860
      @moonshade9860 หลายเดือนก่อน +1

      This equation probably has no practical application since it’s just something to practice the concept with. The concept itself is used a whole lot in practical applications. Digital telecom communications rely on it. Without it there is no gsm or any mobile network.

    • @somersetcace1
      @somersetcace1 หลายเดือนก่อน

      @@moonshade9860 Thanks for the response and that makes sense. I do use mathematical formulas in my own job, but they're preset formulas, and all I'm really doing is plugging in the variables and doing the math. There might be some rearrangement depending on what variable I'm looking for, but that's about it. This, on the other hand, is a completely different level of application and clearly over my head. lol

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 หลายเดือนก่อน +1

    (x ➖ 1ix+1i)

  • @JSSTyger
    @JSSTyger หลายเดือนก่อน +1

    √(i) = ±√(2)/2(1+i)

  • @ferdymariani4784
    @ferdymariani4784 2 หลายเดือนก่อน +1

    What a complication......for nothing...😂

  • @michaelalitheturkali
    @michaelalitheturkali 2 หลายเดือนก่อน +1

    x* (xlessy)*(xless2y)*(xless3y)*................... and use where useful

  • @franknacozy7080
    @franknacozy7080 2 หลายเดือนก่อน +1

    Use d moives theorem 8

  • @69Hauser
    @69Hauser 2 หลายเดือนก่อน +1

    A eso le llamo yo simplificar... y malgastar rotulador. Al mismo resultado se llega por vías mucho más simples. Por cierto, menuda tortura de música. Y Einstein, ¿qué tiene que ver con Oxford?. ¡Ah, que lo de Oxford también es un cebo! Vale.

  • @amehachewa4757
    @amehachewa4757 2 หลายเดือนก่อน +4

    You did a long trip to those who don't know mathematics, so please don't make confusion.
    Mathematics is fun,so make it simple by using the formula as we have learned.

  • @toshimakusugamo
    @toshimakusugamo หลายเดือนก่อน

    √i = ±( √2 / 2 + √2 / 2 i )
    You made a mistake at scene 7:35.
    b is the dependent variable of a.
    b = 1 ÷ 2 ( ±1 / √2 ) : double-sign corresponds.
    To avoid making these mistakes
    Case 1: a = 1 / √2
    b = 1 ÷ 2( 1 / √2 )
    Case 2: a = -1 / √2
    b = 1 ÷ 2( -1 / √2 )

  • @WilliamEdmondson258
    @WilliamEdmondson258 2 หลายเดือนก่อน

    Can I count on my fingers?

  • @horsepower7292
    @horsepower7292 2 หลายเดือนก่อน +1

    4a^4 - 1 = 0 tiene 4 soluciones, cuáles son esas 4 soluciones?

  • @TheOldeCrowe
    @TheOldeCrowe 2 หลายเดือนก่อน +3

    i = e^(iπ/2)
    √i = e^(iπ/4)
    = cos(π/4) + i sin(π/4)
    = (1 + i)/√2
    Straightforward.
    97% failed is a ridiculous click-bait statement.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  2 หลายเดือนก่อน

      Everyone may not be so sharp as you in Mathematics.