Find Perimeter of the Green shaded Annulus | Ring | Concentric circles | Donut | (Fun Geometry)

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024

ความคิดเห็น • 47

  • @mathlover6169
    @mathlover6169 ปีที่แล้ว +4

    You are awasome 😊

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thank you so much 😀
      You are awesome. Keep it up 👍

  • @misterenter-iz7rz
    @misterenter-iz7rz ปีที่แล้ว +3

    As sin 30=1/2, the ratio of radii of two circles is 1:2, if let r be the radius of the small circle, hence 3r^2pi=23 pi, r=sqrt(23/3), therefore the answer is 6rpi=6(sqrt(23/3))pi=52.2.😊

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @davidhernandez9985
    @davidhernandez9985 ปีที่แล้ว +2

    Excellent, Pre-Math suggestion, if I may now, teach & lecture on architecture & engineering equations, please.

    • @PreMath
      @PreMath  ปีที่แล้ว

      Nice suggestion!
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @HappyFamilyOnline
    @HappyFamilyOnline ปีที่แล้ว +2

    Great explanation👍
    Thanks for sharing😊

    • @PreMath
      @PreMath  ปีที่แล้ว

      Glad you liked it!

  • @XLatMaths
    @XLatMaths ปีที่แล้ว +1

    Nice! I like coming up with strange ways of doing these puzzles...

    • @PreMath
      @PreMath  ปีที่แล้ว

      Glad you like them!
      You are awesome. Keep it up 👍

  • @AmirgabYT2185
    @AmirgabYT2185 10 หลายเดือนก่อน +1

    What does perimeter of ring mean?

  • @KAvi_YA666
    @KAvi_YA666 ปีที่แล้ว +2

    Thanks for video.Good luck sir!!!!!!!!!!!

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      So nice of you, dear

  • @marioalb9726
    @marioalb9726 ปีที่แล้ว +3

    Area = ¼ π C²
    C² = 4 A / π
    C² = 4 . 23π / π = 92
    C = √92
    sin 30° = r / R = 1/2
    R = 2 r
    Intersecting tangent-secant theorem:
    (C/2)² = (R+r).(R-r) = (3r)r = 3r²
    ¼C² = 3 r²
    r² = C² /12 = 92/12
    r = 2,769 cm
    R = 5,538 cm
    Perimeter:
    P = 2πR + 2πr
    P = 2π (R + r)
    P = 52,19 cm ( Solved √ )

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @murdock5537
    @murdock5537 ปีที่แล้ว +1

    Nice! OC = r; OA = r + k; sin⁡(φ) = OC/OA = 1/2 = r/(r + k) → r = k →
    3r^2 = 23 → r = √69/3 → 2π(2r) + 2πr = 6πr = 2π√69

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @JSSTyger
    @JSSTyger ปีที่แล้ว +1

    I won't go into the rigorous details, but (assuming we count both the outside and inside perimeter), I get P = 2π(sqrt(92/3)+sqrt(23/3)) = 52.2

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @marioalb9726
    @marioalb9726 ปีที่แล้ว +3

    Area = ¼ π C²
    C² = 4 A / π
    C² = 4 . 23π / π
    C² = 92
    C = √92
    R = ½C / cos30°
    R = 5,538 cm
    R² = (C/2)² + r²
    r² = R² - (½C)²
    r² = 5,538² -92/4
    r² = 7,666
    r = 2,769 cm = ½ R
    Perimeter:
    P = 2πR + 2πr
    P = 2π (R + r)
    P = 52,19 cm ( Solved √ )

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @sarojanikumari310
    @sarojanikumari310 ปีที่แล้ว +2

    😍❤

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thank you! Cheers! 😀
      You are awesome. Keep it up 👍

  • @vidyadharjoshi5714
    @vidyadharjoshi5714 ปีที่แล้ว +1

    OC = r, AC = R. 30/60/90 so AC = 2*OC. green area = pi*(ACsq - OCsq) = 3*pi*rsq = 23*pi. r = sqrt(23/3).
    Perimeter = 2*pi*(AC+OC) = 6*pi*r = 6pi*(sqrt(23/3)) = 52.19

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @santiagoarosam430
    @santiagoarosam430 ปีที่แล้ว +1

    Si el ángulo en "A" es 30º → R=2r → ⊓(R²-r²)=⊓(4r²-r²)=3⊓r²=23⊓ → r²=23/3 → r=√69 → Perímetro corona circular verde = 2⊓(2r+r) =6⊓r=6⊓√69 =52.1920
    Gracias y saludos cordiales.

    • @PreMath
      @PreMath  ปีที่แล้ว

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @講場愛丁堡
    @講場愛丁堡 ปีที่แล้ว

    Is the inner circle be included in the perimeter?

  • @mibsaamahmed
    @mibsaamahmed ปีที่แล้ว +1

    Nice!!

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thank you! Cheers!
      You are awesome. Keep it up 👍

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว +2

    Basta mettere a sistema le 2 equazioni.. 1)R^2-r^2=23..2)r/R=sin30

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @marioalb9726
    @marioalb9726 ปีที่แล้ว +2

    sin 30° = r / R = 1/2
    R = 2 r
    Area = π (R²-r²) = 23π
    R² - r² = 23
    4r² - r² = 23
    r² = 23/3
    r = 2,769 cm
    R = 5,538 cm
    Perimeter:
    P = 2πR + 2πr
    P = 2π (R + r)
    P = 52,19 cm ( Solved √ )

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @MrPaulc222
    @MrPaulc222 ปีที่แล้ว +1

    Before running the video for hints: the 30 degree angle alludes to a 30-60-90 triangle with sides of r, r*sqrt(3), and 2r, and that R=2r. As the area of the annulus is 23pi units^2 and the area of a circle is pi*r^2, I think that means that R-r=sqrt(23) or alternatively that 2r-r=sqrt(23). I think that means that r=sqrt(23). Therefore, R=2*sqrt(23) and D=4*sqrt(23). Therefore, the larger circumference (pi*D) = 4pi*sqrt(23)=60.27(2dp). I wish I had the guts to post this before checking the video :) . Nope. I messed it up but will post it anyway as it's only right to be open about both successes and failures.

    • @PreMath
      @PreMath  ปีที่แล้ว

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @wackojacko3962
    @wackojacko3962 ปีที่แล้ว +1

    Awfully exciting for the astrophysicists too use this math too too determine the mass of the annular rings of Saturn and determine the mass of Saturn's core with flybys of Cassini-Huygens mission satellite. 🙂

    • @PreMath
      @PreMath  ปีที่แล้ว

      😀
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @AmirgabYT2185
    @AmirgabYT2185 10 หลายเดือนก่อน +1

    P=2√69π≈52,19 cm²

  • @ECE621
    @ECE621 ปีที่แล้ว

    Why trigonometry applications is vast?

  • @a.t.mkawsaralam731
    @a.t.mkawsaralam731 ปีที่แล้ว

    Please give me solution this problem The lengths of three sides and two included angles of a quadrilateral are given. AB= 4cm BC= 5cm CD= 5.5cm Angle : ABC= 120° BCD=75° Find value of angle DAB and CDA

  • @ybodoN
    @ybodoN ปีที่แล้ว +1

    Bonus question: what should be the length of R and r so that the perimeter of a 23π cm² annulus is 23π cm?

    • @PreMath
      @PreMath  ปีที่แล้ว

      Great!

    • @ybodoN
      @ybodoN ปีที่แล้ว

      Solution: area = perimeter ⇒ π (R² − r²) = 2π (R + r) ⇒ (R − r) = 2 which is remarkable!
      So here we have π (R² − r²) = 23π ⇒ (R + r) (R − r) = 23 ⇒ (R + r) 2 = 23 ⇒ R + r = 23/2.
      Subtracting R − r = 2 from R + r = 23/2 will give 2r = 23/2 − 4/2 ⇒ r = 19/4 ⇒ R = 27/4.

  • @mohanramachandran4550
    @mohanramachandran4550 ปีที่แล้ว +1

    π ( R² -- r² ) = 23πcm²
    R² -- r² 23
    ( 2r )² -- r² =23
    Ll
    Circumstances =2π ( R + r )

    • @PreMath
      @PreMath  ปีที่แล้ว

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @rakeshkumarrkk5498
    @rakeshkumarrkk5498 ปีที่แล้ว

    By taking cos 30° instead of sin 30° we can do it fast 😊 6:07