Geometry Puzzle | Find area of Yellow shaded semicircle inscribed in a right triangle

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024

ความคิดเห็น • 85

  • @theoyanto
    @theoyanto ปีที่แล้ว +6

    Nice n easy , thanks again 🤓👍🏻

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      My pleasure 😊
      So nice of you.
      Thank you! Cheers! 😀

    • @theoyanto
      @theoyanto ปีที่แล้ว +2

      ​@@PreMathyour geometry problems help to keep me sane, they give me a welcome diversion.

    • @PreMath
      @PreMath  ปีที่แล้ว

      @@theoyanto
      Keep it up, my dear friend. Stay blessed.

  • @batavuskoga
    @batavuskoga ปีที่แล้ว +1

    I solvedd it with the second method. But when you have 12/16 = r/8, I always multiply diagonally.
    Same result, I know, but that's the easiest way for me.
    I love your way of explaining the math problems. Always a clear explanation, you are one of the best

  • @adgf1x
    @adgf1x ปีที่แล้ว +1

    Good presentation.

  • @Abby-hi4sf
    @Abby-hi4sf ปีที่แล้ว +3

    Thank you for showing the (AA ) similar triangles theorem use. Keep up the great work. You are great teacher

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      You're very welcome!
      So nice of you.
      Thank you! Cheers! 😀

  • @billcame6991
    @billcame6991 ปีที่แล้ว +1

    My solution was similar to your second solution except I flipped OPC around the beta angle. BC is 16 and CP is 8 and both have the same angles. Therefore, OC is 10 and OP is 6. OP is the radius and I did half of the circle radius equation.

  • @illyriumus2938
    @illyriumus2938 ปีที่แล้ว +3

    OPC is a similar triangle with ABC and therefore, a 3-4-5 triangle: If PC=8 (4x2), the other side must 3x2=6.

    • @bb55555555
      @bb55555555 ปีที่แล้ว

      yes I saw that too. radius had to be 6

    • @bb55555555
      @bb55555555 ปีที่แล้ว +1

      also once you figured out that the bottom was 16 than that further confirms 6 because that last side of the triangle using the radius had to be 10

    • @phungpham1725
      @phungpham1725 ปีที่แล้ว +1

      This is what I did

  • @XDXD-om9rc
    @XDXD-om9rc ปีที่แล้ว +1

    Very nice explanations, thank you very much!

    • @PreMath
      @PreMath  ปีที่แล้ว

      Glad you enjoyed it!

  • @bigm383
    @bigm383 ปีที่แล้ว +6

    Wow, that semi circle thought he was some kind of tough guy!😂👍❤️

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Well said!
      Thank you! Cheers! 😀

    • @JLvatron
      @JLvatron 5 หลายเดือนก่อน +2

      Tee-Hee!

  • @KAvi_YA666
    @KAvi_YA666 ปีที่แล้ว +1

    Thanks for video.Good luck sir!!!!!!!!!!!!

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      So nice of you

  • @rishudubey1533
    @rishudubey1533 ปีที่แล้ว +2

    thankyou v.much dear ❤

    • @PreMath
      @PreMath  ปีที่แล้ว

      Most welcome 😊
      So nice of you.
      Thank you! Cheers! 😀

  • @samriddhadutta2104
    @samriddhadutta2104 ปีที่แล้ว

    Please give some challenging questions from algebra trignometry .
    Menstruation is not included in our syllabus.

  • @kennethstevenson976
    @kennethstevenson976 ปีที่แล้ว

    I solved this problem using the Pythagorean Theorem, two triangles and two variables and arrived at 32r = 192; r=6 . Area = Pi x 6^2 /2 or 18Pi square units.

  • @murdock5537
    @murdock5537 ปีที่แล้ว +1

    Nice! tan⁡(φ) = 12/16 = 3/4 = r/8 → r = 6 → yellow area = 18π

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Very good!

  • @martinwalker9386
    @martinwalker9386 ปีที่แล้ว +1

    I computed using special triangles and similar triangles to find the radius.

    • @PreMath
      @PreMath  ปีที่แล้ว

      Super!

  • @AmirgabYT2185
    @AmirgabYT2185 6 หลายเดือนก่อน +1

    S=18π≈56,57

  • @maqboolahmad9301
    @maqboolahmad9301 ปีที่แล้ว +1

    Keep it up

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thank you! Cheers! 😀

  • @MultiYesindeed
    @MultiYesindeed ปีที่แล้ว +1

    Love it.

    • @PreMath
      @PreMath  ปีที่แล้ว

      Excellent!
      Thank you! Cheers! 😀

  • @Copernicusfreud
    @Copernicusfreud ปีที่แล้ว +1

    Yay! I solved by the second method.

    • @PreMath
      @PreMath  ปีที่แล้ว

      Bravo!

  • @michaelkouzmin281
    @michaelkouzmin281 ปีที่แล้ว +1

    The 3rd method as derivative of the the 2nd:
    tg(alpha) = 12/16;
    tg(alpha)= r/8;
    r/8 = 12/16;
    r= 8*12/16= 6;
    Ay = pi*r^2/2= pi*6^2/2=18*pi sq units.

    • @PreMath
      @PreMath  ปีที่แล้ว

      Excellent!
      Thank you! Cheers! 😀

  • @wackojacko3962
    @wackojacko3962 ปีที่แล้ว +3

    2nd method...now THAT'S GOD' SPEED! 😇

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Enjoy!
      Thank you! Cheers! 😀

  • @amitsinghbhadoriya6318
    @amitsinghbhadoriya6318 ปีที่แล้ว +2

    Thanks

    • @PreMath
      @PreMath  ปีที่แล้ว

      You are very welcome!
      So nice of you.
      Thank you! Cheers! 😀

  • @spiderjump
    @spiderjump ปีที่แล้ว +1

    AP = AB = 12 ( prop of tangent)
    AC = 12 + 8 = 20
    by pythagorean theorem
    BC = SQROOT OF (20X20 -- 12X12)
    = 16
    OC = 16 -- r where r is radius of semi circle
    by pyth theorem,
    (16 --r) sq = r sq + 8 x8
    solve for r
    r = 6
    hence semi circle area = pi36/2
    = 18pi

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thank you! Cheers! 😀

    • @amit_ganjam
      @amit_ganjam ปีที่แล้ว

      After getting
      BC=16, we can proceed as-
      ∆OPC ~ ∆ABC (By AAA similarity)
      Hence,
      OP/PC = AB/BC
      => r/8 =12/16
      => r = 6
      => A =πr^2/2 = 16π

  • @raya.pawley3563
    @raya.pawley3563 ปีที่แล้ว

    Thank you! If ABC is a 3-4-5 triangle (12, 16, 20), then so is OPC (6, 8, 10).

    • @phungpham1725
      @phungpham1725 ปีที่แล้ว +1

      I think this is the fastest way, kind of shortcut!

  • @Alphamatics1234
    @Alphamatics1234 3 หลายเดือนก่อน

    Which test ?

  • @quigonkenny
    @quigonkenny 10 หลายเดือนก่อน

    By Two Tangent Theorem, PA=AB. Therefore CA = 8+12 = 20. As AB = 12 = 3(4) and CA = 20 = 5(4), this means that ∆ABC is a 4:1 ratio (3,4,5) Pythagorean Triple triangle and that BC = 4(4) = 16. As CA is tangent to Semicircle O at P, ∠CPO is 90°. As ∠BCA and ∠OCP are the same angle and ∠CPO and ∠ABC are both 90°, then ∠POC and ∠CAB are also the same angle and ∆ABC and ∆CPO are similar.
    BC/CP = AB/PO
    16/8 = 12/r
    r = 12(1/2) = 6
    A = (1/2)πr² = (π/2)6² = 36π/2 = 18π

  • @misterenter-iz7rz
    @misterenter-iz7rz ปีที่แล้ว

    Let r be the radius, then OC^2=64+r^2, therefore 400-144=(r+sqrt(64+r^2))^2, 256=16^2=(r+sqrt(64+r^2)), (16-r)^2=64+r^2, r=192/32=6, then the answer is 6x6/2 pi =18 pi.

  • @philipkudrna5643
    @philipkudrna5643 ปีที่แล้ว

    B4 watching: The area is 18pi square units. The hypothenuse of the large triangle is 12+8=20. The bottom side is 16. (12^2+16^2=20^2 or 4 times the famous 3-4-5 right triangle). The radius r can be calculated as follows: r^2+8^2=(16-r)^2. This leads to r=6. The area of the semicircle is r^2*pi/2, which is 18pi.

  • @vidyadharjoshi5714
    @vidyadharjoshi5714 ปีที่แล้ว +1

    Let OP = R. BC = 16. OC = 16 - R. In OPC OCsq = Rsq + 64. 256 - 32R + Rsq = Rsq + 64. 32R = 192. R = 6 Area = 18pi = 56.55

    • @PreMath
      @PreMath  ปีที่แล้ว

      Excellent!
      Thank you! Cheers! 😀

  • @Aligakore
    @Aligakore ปีที่แล้ว

    So, once again, I did not chose the easiest approach… Quickly figured that the hypothenuse of the right triangle ABC is 20 (12+8). I have decomposed BC as 2*r+x and OC as r+x. Noticed that ABC and OPC are similar triangles so (r+x)/r=20/12=5/3 => 1+(x/r)=5/3 => x/r=2/3 => x=2/3*r. BC can thus be written as 2*r+(2/3)*r=(8/3)*r.
    Using the Pythagorean theorem : ((8/3)*r)^2 + 12^2 = 20^2 => (64/9)*r^2=256 => r^2=36 => r=6 (a length cannot be negative).

  • @adampiechuta5774
    @adampiechuta5774 ปีที่แล้ว

    Solving for x could be faster if you noticed that tangens of angle C is 12/16 so is 6/8 and also r/8 so r=6.

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว

    Per costruzione lipotenusa é 8+12=20...per Pitagora risulta 20^2=12^2+(r+rad(64+r^2))^2....r^2=36....Ay=36pi/2=18pi

  • @devondevon4366
    @devondevon4366 ปีที่แล้ว

    18 pi or 56.55
    Line AP= 12 (Tangent circle theorem)/ Hence AC = 20 (12+ 18) . BC = 16 since this is a 3-4-5 right triangle
    scaled up by 4.
    Draw a perpendicular line from P to O, forming a right triangle. This is the radius, r . Line OC = 16- r (since line BO =r
    and BC=16), and PC =8 (given).
    Using Pythagorean theorem: r^2 + 8^2 = (16-r)^2
    r^2 + 64 = 256+r^2 - 32r
    64-256 = - 32r
    -192 = - 32 r
    6=r
    so radius of the semi circle = 6. The area of the circle is pi 6^2 or 36 pi, hence the area of the semi circle is
    18 pi or 56. 55 Answer

  • @Constantine817
    @Constantine817 ปีที่แล้ว +1

    There is one more method: if BC=16, then 8²= 16*(16-2r); 64=256-32r; 32r=192; r=6; then Area= π*6²/2 = 18π

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Excellent!
      Thank you! Cheers! 😀

    • @Constantine817
      @Constantine817 ปีที่แล้ว

      @@PreMath My pleasure! Cheers!🙏

  • @ybodoN
    @ybodoN ปีที่แล้ว

    Let's use BC as the axis of symmetry to reflect the diagram and get a circle inscribed in a triangle with sides a = 24 and b = c = 20.
    We can then use the general formula for the inradius of an incircle in a triangle: r = √[(s − a)(s − b)(s − c)/s] where s = ½ (a + b + c).

  • @marioalb9726
    @marioalb9726 ปีที่แล้ว +1

    Big Right triangle:
    Hypotenuse = 8 + 12 = 20cm
    h² = 20² -12²
    h = 16 cm
    Similarly of triangles:
    16/20 = 8 / (h-r)
    h - r = 8 . 20 / 16 = 10
    r = h - 10 = 6 cm
    Area = πr² /2
    Area = 56,55 cm² ( Solved √ )

  • @honestadministrator
    @honestadministrator ปีที่แล้ว

    ∆POC is similar to ∆ BAC
    AB / BC = r / PC
    r = PC * AB / BC
    = 8 * 12 / √( 20^2 - 12^2)
    = 8 * 12 / 16 = 6 unit

  • @MrPaulc222
    @MrPaulc222 7 หลายเดือนก่อน

    I went for r^2 + 8^2 = (16-r)^2 for the radius, and went from there.

  • @sumithpeiris8440
    @sumithpeiris8440 ปีที่แล้ว

    If the semicircle cuts BC at D, then BD. BC = BP^2
    So BD = 8^2/16 = 4 so BD = 16-4 =12
    So radius = 6

  • @shrikrishnagokhale3557
    @shrikrishnagokhale3557 ปีที่แล้ว +1

    18π

  • @skipmars7979
    @skipmars7979 ปีที่แล้ว

    x-c-lent

  • @ybodoN
    @ybodoN ปีที่แล้ว

    Generalized: the area of the yellow semicircle is _π a² b / (2 (2a + b))_ where _a_ = AB and _b_ = PC.

  • @SAHIRVLOGCLP
    @SAHIRVLOGCLP ปีที่แล้ว

    Thank you for your sharing,. I'm 74, I tried TH-cam, but It's slow to grow, help me proff, thank you.

  • @militarymatters685
    @militarymatters685 ปีที่แล้ว +1

    18pi

    • @PreMath
      @PreMath  ปีที่แล้ว

      .
      Thank you! Cheers! 😀

  • @devondevon4366
    @devondevon4366 ปีที่แล้ว

    18 pi or 56.55

  • @vara1499
    @vara1499 ปีที่แล้ว +1

    One method is a short step while the other is long one.

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Excellent!
      Thank you! Cheers! 😀

    • @vara1499
      @vara1499 ปีที่แล้ว

      @@PreMath by the way, may I ask if you are of Asian origin ( specifically from india)?. Don't mistake me for asking this question.

  • @Mr._yousufzai
    @Mr._yousufzai ปีที่แล้ว

    Only in 30 sec i got the answer

  • @prossvay8744
    @prossvay8744 ปีที่แล้ว

    Area of yellow shaded semicircle=18π

  • @DB-lg5sq
    @DB-lg5sq ปีที่แล้ว

    r/8=12/16
    r=6

  • @JSSTyger
    @JSSTyger ปีที่แล้ว +1

    I think r = 6 and area = 18π

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thank you! Cheers! 😀

  • @comdo777
    @comdo777 ปีที่แล้ว

    asnwer=18 is it hmm so than

  • @misterenter-iz7rz
    @misterenter-iz7rz ปีที่แล้ว +1

    Too early 😢

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thank you! Cheers! 😀

  • @shrikrishnagokhale3557
    @shrikrishnagokhale3557 ปีที่แล้ว +1

    18π