Can you find area of the red Triangle ABC? | Square and Equilateral triangle | [Math Olympiad]

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 ธ.ค. 2024

ความคิดเห็น • 34

  • @bigm383
    @bigm383 ปีที่แล้ว +2

    Thanks Professor!❤🥂

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      My pleasure!
      You are awesome. Keep it up 👍

  • @bighominid
    @bighominid ปีที่แล้ว +2

    As another commenter suggested, once you have the triangle side length, finding the area just means applying the formula for the area of an equilateral triangle: (s^2√3)/4. No need to determine h. Easy!

  • @jimlocke9320
    @jimlocke9320 ปีที่แล้ว +1

    Trigonometry can be avoided by making use to the ratios of sides for the 30°-60°-90° special triangle: short side, long side, hypotenuse = 1 : √3 : 2. ΔAED is such a triangle, and its long side is 1, so short side is 1/√3 = (√3)/3 and length AB = 1 + (√3)/3 = (3 + (√3))/3. The formula for the area of an equilateral triangle is A = ((√3)/4)s², where s is the length of a side. So s² = ((3 + (√3))/3)² = (9 + 6√3 + 3)/9 = (9 + 6√3 + 3)/9 = (12 + 6√3)/9. Multiply by (√3)/4) to get A = ((√3)/4)(12 + 6√3)/9 = (12√3 +(6)(3))/((4)(9)) = (12√3 +18)/36 = (3 + 2√3)/6, as PreMath also found.

  • @thewolfdoctor761
    @thewolfdoctor761 ปีที่แล้ว +3

    Once you get the equilateral triangle side length, then you can use the formula Area = 1/2(ab)Sin(x), in this case ((side length)^2 * sin(60))/2 ~= 1.08

    • @PreMath
      @PreMath  ปีที่แล้ว +2

      Very true! Thanks, dear

  • @soli9mana-soli4953
    @soli9mana-soli4953 ปีที่แล้ว +1

    Triangle AED is a 30°60°90° triangle and DE = 1 (side of the square) that means X√ 3=1 so X = √ 3/3
    then the side of equilateral triangle is 1 + √ 3/3... and so on...

  • @KAvi_YA666
    @KAvi_YA666 ปีที่แล้ว

    Thanks for video.Good luck sir!!!!!!!!!!

  • @JamesDavy2009
    @JamesDavy2009 ปีที่แล้ว

    If a variable ends up as a denominator in a trigonometric ratio, use a reciprocal ratio (csc, sec, cot). The value x is simply cot(60°), equalling sqrt(1/3); and instead of rationalising the denominator, you could have used the laws of radicals: 1/sqrt(3) = sqrt(1/3). Either approach yields the same value.

  • @murdock5537
    @murdock5537 ปีที่แล้ว +1

    Nice! BE = DE = 1; EAD = 2φ = 60°; AE ∶= a → DE = BE = a√3 = 1 → a = √3/3 →
    AB = a(√3 + 1) = (1/3)(3 + √3) → AB/2 = (1/6)(3 + √3) →
    BM = AM = AB/2 → sin⁡(BMC) = 1 → CM = (AB/2)√3 = (1/6)(√3)(3 + √3) →
    area ∆ABC = (1/6)(3 + √3)(1/6)(√3)(3 + √3) = (1/6)(√3)(2 + √3) = (1/6)(3 + 2√3)

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Super!

  • @georgebliss964
    @georgebliss964 ปีที่แล้ว

    I used a Trig.method to calculate the side length of triangle.
    Joining D to B forming the diagonal of the square DB.
    Since the sides of the square = 1, then DB = Sq.rt 2.
    Angle DBA = 45 degrees.
    Angle DAB = 60 degrees.
    Therefore angle ADB = 180 - 45 - 60 = 75 degrees.
    Applying Sine Rule to triangle DBA.
    DB / sin 60 = AB / sin 75.
    Sq.rt 2 /sin 60 = AB / sin 75.
    AB = 1.57735, same as ( 3 + root 3) /3 quoted.

  • @mohabatkhanmalak1161
    @mohabatkhanmalak1161 ปีที่แล้ว +1

    Thank you Ustad (ie.,Proffessor)!😎

    • @PreMath
      @PreMath  ปีที่แล้ว

      So nice of you, dear
      You are very welcome!
      You are awesome. Keep it up 👍
      Stay blessed 😀

  • @marcovargasglobant7923
    @marcovargasglobant7923 ปีที่แล้ว +1

    Once you have the side lenght of triangule, no need for calculate "h", just use the formula for equilateral triange!! (L²√3) / 4

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      True! Thanks

  • @raya.pawley3563
    @raya.pawley3563 ปีที่แล้ว

    Thank you!

  • @svmartins1
    @svmartins1 ปีที่แล้ว

    Biutiful, i did solve it.
    Biuti problem
    Kind regards from Portugal

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว +1

    Per la similitudine dei triangoli risulta sqrt3/2*l:l/2=1:(l-1)...l=1/sqrt3+1...calcolato l ,A=sqrt3/4*l^2

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @stark2518
    @stark2518 ปีที่แล้ว

    Area of equilateral triangle √3/4 multiplied by a²

  • @tedn6855
    @tedn6855 ปีที่แล้ว

    I calculated the lengths of blue triangle outside. And added missing bottom length from 1. Added that to diagonal and that gave me equilateral length. I think your way was one less step. Same answer though.

  • @marioalb9726
    @marioalb9726 ปีที่แล้ว +1

    Sidei 's' of square:
    s = √1 = 1 cm
    Base or side 'b' of triangle:
    tan 60° = s / (b - s)
    (b - s) tan 60° = s
    √3 b - √3 s = s
    √3 b = (1+√3) s
    b = (1/√3 + 1) s
    b = 1,5774 cm
    Area of triangle
    A = ½ b² sin 60°
    A = 1,077 cm² (Solved √ )

  • @misterenter-iz7rz
    @misterenter-iz7rz ปีที่แล้ว +2

    AD=2/root 3, FG=1/root 3, so DC=1-1/root 3, then AC=2/root 3+1-1/root 3=1+1/root 3, therefore the answer is (1+1/root 3)^2root 3/4=(4/3+2/root 3 )root 3/4=1/root 3+1/2=1.07735 approximately. 😊

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @vidyadharjoshi5714
    @vidyadharjoshi5714 ปีที่แล้ว

    Tan 60 = DE/AE = 1.732Let DE = X, X = 0.577. Height of the triangle = sqrt( 1.577sq - 0.25*1.577sq) = 1.366.
    Area of triangle = 1.577*1.366*0.5 = 1.077

  • @ybodoN
    @ybodoN ปีที่แล้ว +1

    Generalized: the area of the equilateral triangle ABC is (3√S + √3)² / (12√3) where S is the area of the square BEDF.

    • @PreMath
      @PreMath  ปีที่แล้ว

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @wackojacko3962
    @wackojacko3962 ปีที่แล้ว +1

    When you can't use Pythagoras....use SOH CAH TOA too find side lengths of right triangles. Good problem! 🙂

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Excellent!
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @saumypandey2288
    @saumypandey2288 ปีที่แล้ว +1

    Directly apply area of equilateral triangle

  • @hernan860
    @hernan860 ปีที่แล้ว

    1/3 cm2

  • @halitiskender1324
    @halitiskender1324 ปีที่แล้ว

    Pembe alan1/3