Fastest Method | Solving This Mathematics Problem | Math Olympiad Problem.

แชร์
ฝัง
  • เผยแพร่เมื่อ 6 ม.ค. 2025

ความคิดเห็น • 7

  • @henrya.bbruce4854
    @henrya.bbruce4854 9 ชั่วโมงที่ผ่านมา

    Am a chemist but after following you , am now more mathematician than a chemist.

  • @LeonardoAntónioTchipuapuaCalem
    @LeonardoAntónioTchipuapuaCalem 5 วันที่ผ่านมา

    Correct

  • @ElvisSaturn
    @ElvisSaturn 5 วันที่ผ่านมา +5

    √m +√-m = 12 -> √m(1+i) = 12 -> √m = 12/(1+i) -> m = ±12²/(1+i)² -> m = ±144/(1-1+2i) -> m=±72/i = ∓72i (Fastest Method )

  • @ABHISHEKKUMAR-01024
    @ABHISHEKKUMAR-01024 4 วันที่ผ่านมา

    Arbitrary approach:
    Given equation is
    √m + √( - m) = 12 ...(1)
    Let √m = p and √( - m) = q
    Then m = p² and - m = q²
    Then p² + q² = 0 ...(2)
    Also equation (1) becomes
    p + q = 12 ...(3)
    Now, (p + q)² = p² + 2pq + q²
    = (p² + q²) + 2pq
    Putting p + q = 12 and p² + q² = 0, we get
    (12)² = 0 + 2pq
    or, 144 = 2pq
    or, 72 = pq ...(4)
    Now, (p - q)² = (p + q)² - 4pq
    = (12)² - 4(72)
    = 144 - 288
    = - 144
    = 144i²
    = (12i)²
    => p - q = ± 12i
    Now, 2p = (p + q) + (p - q)
    = 12 + ( ± 12i )
    = 12 + 12i, 12 - 12i
    => p = 6 + 6i, 6 - 6i
    => √m = 6 + 6i, 6 - 6i
    => m = (6 + 6i)², (6 - 6i)²
    = 6² + 2(6)(6i) + (6i)²,
    6² - 2(6)(6i) + (6i)²
    = 36 + 72i + 36i²,
    36 - 72i + 36i²
    = 36 + 72i + ( - 36 ) , 36 - 72i + ( - 36 )
    = 72i, - 72i
    = ± 72i
    Another approach :
    Let √m = p and √( - m) = q
    Then p + q = 12 ...(1)
    Also, m = p² and - m = q²
    Now, p² - q² = m - ( - m)
    or, p² - q² = 2m
    or, (p + q)(p - q) = 2m
    or, 12 (p - q) = 2m
    or, p - q = m/6
    Now, 2p = (p + q) + (p - q)
    or, 2p = 12 + (m/6)
    or, 2√m = 12 + (m/6)
    or, (2√m)² = { 12 + (m/6) }²
    or, 4m = (12)² + 2(12)(m/6) + (m/6)²
    or, 4m = 144 + (24)(m/6) + (m²/36)
    or, 4m = 144 + 4m + (m²/36)
    or, 0 = 144 + (m²/36)
    or, 144 + (m²/36) = 0
    or, (m²/36) = - 144
    or, m² = - 36 × 144
    or, m² = - 6² × 12²
    or, m² = - (6 × 12)²
    or, m² = - 72²
    or, m² = 72²i²
    or, m² = (72i)²
    or, m = ± 72i
    And many more approaches...

  • @wes9627
    @wes9627 5 วันที่ผ่านมา

    Let m=±ai where a>0 is real. Then m and -m lie on opposite sides of a radius a circle centered on the origin of the complex plane.
    Now √(±m) = √a√(±i)=√a[cos(±π/4)+i*sin(±π/4)] Then √m+√(-m)=√a[cos(π/4)+i*sin(π/4)]+√a[cos(-π/4)+i*sin(±π/4)]=2√a(√2/2)=12
    It follows that √a=12/√2, a=144/2=72, and m=±72i.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 5 วันที่ผ่านมา +1

    Sqrt[72i]+Sqrt[-72i] m=±72i It’s in my head.

    • @onlineMathsTV
      @onlineMathsTV  5 วันที่ผ่านมา +1

      Nice one, that is while you are the best sir.
      Maximum respect sir.