Math Olympiad Problem | A Nice Math Square Root Simplification Problem | Best Trick.
ฝัง
- เผยแพร่เมื่อ 5 ก.พ. 2025
- Hello 👩❤️👨👩❤️👨👩❤️👨
How Are You Today👍👍👍
If you like this video about
How To Solve This Math Olympiad Square Root Simplification Problem,
Please Like And Subscribe To My Channel 🙏🙏🙏
#matholympiad #algebra #olympiadmathematics #mathsfocus #statistics #maths #MathOlympiadPrep #AlgebraSolutions #ExponentialFunctions #MathForKids #AlgebraMadeEasy #MathOlympiadQuestions #ExponentialEquations #MathTutoring #MathPractice #AdvancedMath #MathsFocus #MathOlympiad #Algebra #ExponentialProblems #MathChallenge #MathTips #MathTricks #MathCompetition #LearnMath #MathSkills #MathOlympiadPrep #AlgebraSolutions #ExponentialFunctions #MathForKids #AlgebraMadeEasy #MathOlympiadQuestions #ExponentialEquations #MathTutoring #MathPractice #advancedmaths
Thank You
Click Here for more: / @mathsfocus8610
If you want to know more about Parenting Into The Diaspora Click Here: / @talktotolutoro293
When any knowledge goes beyond necessity it loses its importance.
Excellent. Great job ❤
Great illustration on methods 1 and 2. Wish I had you as an instructor while in school. God speed on your you tube success.
Amen. Thanks
well done! 😃
Very good!
So easy
Решить уравнение означает найти его корни и доказать, что других корней нет. А разьве у уравнения 31-й степени не должен быть 31 корень включая комплексные?
Is it really Math OLYMPIAD Problem?? REALLY??
They call everything Olympiad problem. These are just indices.
I don't think so.
Just count the number of square roots. There are 5 so the LHS index power must be 1 / 2^5) = 1/32
X^(1/32) = 2^3
Then solve.
What nonsense that this is Olympiad?
@@AlphaSorcerorisn’t your answer wrong?
@@Velvetmystz it’s wrong. I saw it as 5 sets of square root on an “x” but it isn’t.
Use indes laws.
The LHS = x to the power 1/32.
X = 8 to the 32
x^(1/2+1/4+1/8+1/16+1/32)=x^(31/32)
=8
x=8^(32/31)
ok
x=2^(32/31*3)= 8*(8^1/31)
subst u^32 = sqrt(x)
=> u^31= 8
u = 8^(1/31)
resubstitution:
sqrt(x) = 8^(32/31)
x = 8^(64/62) = 8^(32/31)
Мало знаков, добавить ещё 5😅😅😅
Another way is by moving the x's under the next square root by squaring them. That ends up as x^(31) under five square roots. 2^5 is 32, so we end up with x^(31/32) = 8, just like the second method.
√x √x √x √x √x = 8 Squaring both sides =>
x √x √x √x √x = 64 => (√x √x √x √x) = 64 / x
substitute back into original equation =>
√( x * 64 / x ) = √64 = 8
Apply thumbs rule (1 - 1/2^n) where n = # of square roots (√)
√ = 1/2, √√ = 3/4, √√√ = 7/8...
√√√√√=31/32
1/32+1/16+1/8+1/4+1/2....
x^(31/32)=8 , /()^(32/31) , x=8^(32/31) ,
Last sq.root need
X^1/2
√(x√x........)=x^(31/32) ; so, x^(31/32)=8 ; i,e x=8^(32/31) ; i,e x=2^(3×32/31) ; i,e x= 2^(96/31)
√x√x√x√x√x= 8
√x.x^2√x√x√x=8
√x.x^2.x^4√x√x=8
√x.x^2.x^4.x^8√x=8
√x.x^2.x^4.x^8.x^16=8
√x^(1+2+4+8+16)=8
√x^31=8
x^31/32=8
X= 8^(32/31)
Los índices de cada raíz se van multiplicando 2x2=4, 4x2=8, 8x2=16, 16x2= 32
Not series
Esta mal
Это шутка?
gak jls prblem mu bos sudalah bermain angka dah gak jls