Non-Integer Solutions (Team Selection Test)

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ธ.ค. 2024

ความคิดเห็น • 65

  • @rpggamers7867
    @rpggamers7867 11 หลายเดือนก่อน +12

    The way i was watching this channel since its begging seeing it grow makes me so happy fr

  • @mikelivstone
    @mikelivstone 11 หลายเดือนก่อน +26

    From about 2:28, it's actually pretty easy to factor to get (x^4-1)(x^3+1) = 0, so either:
    • x^4 = 1 --> x=±1 or ±i, or
    • x^3 = -1 --> 3 evenly-spaced solutions around the unit circle in the complex plane --> x = -1 or 0.5±0.5i*sqrt3
    So, there are 4 non-integral roots, all unique.

    • @maxvangulik1988
      @maxvangulik1988 11 หลายเดือนก่อน +3

      non-integer*

    • @Kristianres
      @Kristianres 2 หลายเดือนก่อน

      Yeah I got that straight away it’s actually very straight forward

  • @parasgaur1856
    @parasgaur1856 11 หลายเดือนก่อน +14

    Sir, as a matter of fact. By further examination by Descartes rule of signs and Rational + Integer root theorem, we find out that the 4 non-integer solutions are actually all complex solutions.
    Thus we can say that the equation has 3 Real (3 Integer + 0 Non-Integer) & 4 Complex Solutions. 😊

  • @amoswittenbergsmusings
    @amoswittenbergsmusings 11 หลายเดือนก่อน +1

    First: such a beautiful exposition! Prime Newton's love for his subject shines through his videos.
    Second: look at the factorisation of the expression! It is (x-1) . (x+1)^2 . (x*2+1) . (x^2-x+1), The last factor shouts TRIANGLE if you recognise a cyclotomic polynomial. If you now take one of the factors (x+1) and multiply it into the last factor and also multiply the remaining factors, ypu get a beautiful and revealing form of the polynomial!
    (x^4 - 1) . (x^3 + 1). The roots of the first factor are obviously +/- 1 and +/1 i, the x (or y!) coordinates of the vertices of a square. Similarly the second factor for an equilateral trangle. The solution now stares you in the face: exactly three integer roots.
    I have not done the work but I am pretty sure that the polynomial can be written as a trigonimetric identity and with help of Euler and de Moivre as some beautiful function of a complex variable.
    Were the framers of this problem inspired by geometry? It certainly looks like it...
    All this is not to suggest a better solution but merely to have a closer look at the beauty of the problem. This is just one of the ways in which the universe sings.

    • @koenth2359
      @koenth2359 11 หลายเดือนก่อน

      Well done. I also found the factorization, but not that most elegant form.

  • @arjunnarasimhan1558
    @arjunnarasimhan1558 11 หลายเดือนก่อน +10

    Alternatively we can factor x⁷+x⁴-x³-1 as (x³+1)(x⁴-1)=(x+1)(x²-x+1)(x-1)(x+1)(x²+1) where quadratics clearly all have imaginary roots - so 1,-1,-1

    • @maxvangulik1988
      @maxvangulik1988 11 หลายเดือนก่อน

      those are integer solutions

  • @cesarbasilio2804
    @cesarbasilio2804 11 หลายเดือนก่อน +2

    Teacher, you always explain super great. You are a charismatic teacher. Thank you very much!!

  • @Rai_Te
    @Rai_Te 11 หลายเดือนก่อน +2

    The only thing I did slightly different was the polynominal/syntetic division ... I divided the original equation in one go by x^2 -1 (which is (x+1)(x-1) ), and therefore 'saved' one division step. (the remaining division attempts were the same as shown in the video).

  • @christianfunintuscany1147
    @christianfunintuscany1147 11 หลายเดือนก่อน +11

    It is so easy to simplify this equation into the basic factors that give us an overview of all the solutions: x4(x3+1)-(x3+1) =
    (x3+1)(x4-1) =
    (x3+1)(x2+1)(x2-1) =
    (x2-x+1)(x2+1)(x-1)(x+1)(x+1)
    So we have 3 integer solutions (one is double) from the last three factors, and 4 real solutions from the first two factors

    • @XiOjala
      @XiOjala 11 หลายเดือนก่อน +1

      That's how I did it. But the first two factors don't give real solutions. The first gives two complex solutions and the second gives two imaginary ones. I started with synthetic division but life is too short the way I do it.

    • @azzteke
      @azzteke 11 หลายเดือนก่อน +1

      Simplify!

    • @rayyt5566
      @rayyt5566 11 หลายเดือนก่อน

      I used this method too : )

    • @christianfunintuscany1147
      @christianfunintuscany1147 11 หลายเดือนก่อน

      @@XiOjala yes true, the others are complex solutions because both factors have Delta

    • @christianfunintuscany1147
      @christianfunintuscany1147 11 หลายเดือนก่อน

      @@azzteke sorry 😃

  • @mahadihassan6733
    @mahadihassan6733 11 หลายเดือนก่อน

    Congratulations 🎉on 100k+ subscribers.Great teachers like you always teach not to stop learning, cuz those who stop learning, stop living 😊😊

  • @mn-lc7em
    @mn-lc7em 11 หลายเดือนก่อน

    Your presentation is didactic.
    Verry useful.
    Thank you

  • @johnnolen8338
    @johnnolen8338 11 หลายเดือนก่อน +1

    Ans. There are 4 non-integer roots of this polynomial. It can be factored as:
    (x - 1)(x + 1)^2(x^4 - x^3 + 2x^2 - x + 1) ◼
    Solution obtained via synthetic division.

    • @nanamacapagal8342
      @nanamacapagal8342 11 หลายเดือนก่อน +1

      NOTE: That right hand side you can already tell has no integer solutions by rational root theorem but you can still factor it into (x^2 - x + 1)(x^2 + 1) if you so wish

    • @johnnolen8338
      @johnnolen8338 11 หลายเดือนก่อน

      @@nanamacapagal8342 Nice catch. I worked to solve the problem as written (before watching the video). It didn't occur to me to clean up the solution any further. Of course I'm of the opinion that once you've found what you're looking for, you should stop looking.

  • @punditgi
    @punditgi 11 หลายเดือนก่อน +13

    Prime Newtons does it again! 🎉😊

  • @davidbrisbane7206
    @davidbrisbane7206 2 หลายเดือนก่อน

    Decartes' Rule of Signs tells us that there is one positive real root and zero or two negative real roots.
    The Rational Roots Theorem finds that 1 and -1 are rational roots. As we found one negative real root, then by Descartes' Rule of Signs, there is a second real root. Unfortunately, it doesn't tell us that the other negative root is rational. However, it does tell us that the other four roots are complex.

  • @maxvangulik1988
    @maxvangulik1988 11 หลายเดือนก่อน +1

    x^7-1=(x-1)(x^6+x^5+x^4+x^3+x^2+x+1)
    (x-1)(x^6+x^5+x^4+2x^3+x^2+x+1)=0
    x=1 integer, rejected
    x=-1 is also a solution by observation. It's also an integer, but i can divide by x+1
    x^5+x^3+x^2+1=0
    🚨quintic alert🚨
    luckily, -1 is a solution to this as well so we can divide again.
    x^4-x^3+2x^2-x+1=0
    I see an overlap
    (x^2-x+1)(x^2+1)=0
    do complex numbers with nonzero integer imaginary parts count as integers?
    x^2-x+1=0
    x=(1+-sqrt(-3))/2
    x^2+1=0
    x=+-i
    there are either 2 or 4 non-integer solutions depending how integers are defined.

  • @restablex
    @restablex 11 หลายเดือนก่อน +1

    If you factor the equation you get:
    (x^4-1)(x^3+1) = 0
    Then
    (x^2-1)(x^2+1)(x+1)(x^2-x+1)=0
    Integer roots:
    x^2-1 = 0 -> 2 int roots
    x+1 =0 -> 1 int root
    Non Integer roots
    x^2+1 =0 -> 2 complex roots
    x^2-x+1 =0 -> 2 complex roots

  • @vitowidjojo7038
    @vitowidjojo7038 11 หลายเดือนก่อน +2

    This one is interesting... Usually we are asked about integer solutions, but this question asks about NOT integer solutions...
    Though we aren't calculating what are those for non integer solutions are, i still think this one is different.

  • @sans1331
    @sans1331 7 หลายเดือนก่อน

    x^7+x^4-x^3-1=0
    or x^7-x^3+x^4-1
    =x^3(x^4-1)+(x^4-1)=0
    divide all sides by x^4-1 and we get:
    x^3+1=0
    =>x^3=-1
    we know (-1)^3=-1, factor out the root and you get:
    x^2-x+1
    [1 quadratic formula later]
    x=(1+/-sqrt(-3))/2 (both not integers so we’ll ignore them)
    next, x^4-1=0
    it’s obvious that x is 1, -1, and x=i is also a solution
    and x=-i is a solution too, since every negative version of a solution counts as well
    so, recap:
    x=-1
    x=(1+isqrt3))/2
    x=(1-isqrt3))/2
    x=1
    x=-1
    x=i
    x=-i
    so 3 solutions are integers (unless you consider i an integer, in which case 5 solutions are integers)

  • @ingiford175
    @ingiford175 10 หลายเดือนก่อน +1

    At 2:38 by looking at the equation it has one real positive root and 2 or zero negative roots. Only possible rational roots are +- 1, so only need to check for double root on the -1 solution
    Edit: It would have saved you from having to test the value of 1.
    Edit: You need to be careful when you say integers. Because there is a definition of integers in complex we can not test without actually factoring.

    • @PrimeNewtons
      @PrimeNewtons  10 หลายเดือนก่อน

      Every time someone says 'complex', I quake. I will watch out from now on.

    • @ingiford175
      @ingiford175 10 หลายเดือนก่อน +1

      @@PrimeNewtons Because Gaussian integers Z[i] are integers and have their own subset of primes, which some are the same as the regular primes (if p = 3 mod 4) otherwise you can factor.

  • @FadkinsDiet
    @FadkinsDiet 11 หลายเดือนก่อน +1

    Beautiful!

    • @PrimeNewtons
      @PrimeNewtons  11 หลายเดือนก่อน

      Thank you! Cheers!

  • @juriskotleris5782
    @juriskotleris5782 11 หลายเดือนก่อน +1

    thank You very much, I really enjoy Your videos!

  • @ΚωνσταντινοςΔημητριου-τ4ε
    @ΚωνσταντινοςΔημητριου-τ4ε 11 หลายเดือนก่อน +1

    why do all of this instead of easily factoring the polynomyal as (x^2 + 1)(x - 1)(x + 1)(x^2 - x + 1)(x+1)

  • @diegocabrales
    @diegocabrales 11 หลายเดือนก่อน

    Since any number is divisible by 1, then they're also divisible by -1. The first one wouldn't change the number, while the other one would change its sign. We can make these divisions as many times as we want. Synthetic division is therefore not dividing by 1, or -1, since that would not give us any reduced polynomial (i.e, of lower degree), therefore not being really any synthetic division, but by (x - 1), and [x - (-1)] = (x + 1).
    By the way, when have you solved a cubic equation in this video? I've only seen that you found the number of non-integer solutions (though for me are sets of non-integer solutions, since I consider that two complex numbers with same value, but different arguments are different because they live in different complex planes. Since the number of arguments are infinite, the number of complex solutions are always infinite, though the number of sets of complex solutions are finite).

  • @lukaskamin755
    @lukaskamin755 6 หลายเดือนก่อน

    Do you have a video on Descartes rule of signs?, we haven't learnt one at school, where I live

  • @dronevluchten
    @dronevluchten 11 หลายเดือนก่อน

    Synthetic division: completely new to me. Please give a separate video about this subject. It was dazzling me.

    • @lukaskamin755
      @lukaskamin755 10 หลายเดือนก่อน

      Other name for that, which I learned is Gorner scheme ( or method), I used to learn it in slightly different format, where we omit writing that intermediate line with products, rather doing two actions(multiplication and then addition) mentally writing the third line at once,without the second line. In fact it's a simplified version of long division for polynomials, without writing all those x's with exponents and repeating the same terms at least twice. But it only works if you divide by (x-a) otherwise it won't give you correct results, than you put a in that left corner ( in the video there were 1 and - 1 that means it can be divided by (x-1)(x+1)²and the figures in the last line are coefficients of the quotient)

  • @aashsyed1277
    @aashsyed1277 27 วันที่ผ่านมา

    what do you mean you don't have access to the blackboard?

  • @kaiserquasar3178
    @kaiserquasar3178 3 หลายเดือนก่อน

    Turns out factoring this is rather simple. x^7-1=(x-1)(x^6+x^5+x^4+x^3+x^2+x+1). (this is true for all x^n-1, if n is rational, since all the terms cancel out and you'll be left with x^n-1)
    x^6+x^5+x^4+x^3+x^2+x+1+x^3=(x^3+x^2+x+1)(x^3+1)=(x+1)(x^2+1)(x^3+1)=(x+1)(x^2+1)(x+1)(X^2-x+1)
    you end up getting (x+1)^2(x-1)(x^2+1)(x^2-x+1)=0, solve the 2 quadratics to get 4 complex solutions that aren't integers.

  • @petejackson7976
    @petejackson7976 11 หลายเดือนก่อน

    Solving for x would yield x=1, x=-1 ,x=-1 and two complex numbers x=i and x= -i only

  • @bvnmrao2040
    @bvnmrao2040 11 หลายเดือนก่อน

    Take x cube as factor from x power seven and x power four
    -1 as factor from -x cube and -1
    Finally take x cube +1
    Factor
    You will get x power 4 -1 and x cube +1 =0
    Further you get x square =-1 or + 1 and x cube =-1 from x square =. -10you get tow non integer roots
    From x cube = -1 you get two non integer roots
    Finally four non integer roots and x=-1,-1,1 are integer roots
    Answer is four non integer roots

  • @rogerkearns8094
    @rogerkearns8094 11 หลายเดือนก่อน

    Never knew about this, thanks.

  • @ПетрКурнев
    @ПетрКурнев 11 หลายเดือนก่อน

    thank you. well done ! 💥

  • @jafecc
    @jafecc 4 หลายเดือนก่อน

    What if you have a whiteboard and a black marker in every video?

  • @sheonandanprasad4212
    @sheonandanprasad4212 11 หลายเดือนก่อน +1

    Great viedo but what happened to the background

    • @PrimeNewtons
      @PrimeNewtons  11 หลายเดือนก่อน +3

      What background? You mean blackboard?

    • @itachu.
      @itachu. 11 หลายเดือนก่อน

      Yes​@@PrimeNewtons

    • @PrimeNewtons
      @PrimeNewtons  11 หลายเดือนก่อน +1

      @@itachu. Went on a trip.

  • @jacobgoldman5780
    @jacobgoldman5780 11 หลายเดือนก่อน

    How do we know the 4 noninteger solutions are unique? If two of them are say i, wouldnt you call that one noninteger solution with multiplicity 2? Also this doesnt seem like a cubic equation since leading term is x^7. Otherwise, great explanations of rational root theorem, remainder theorem, and synthetic divison :)

    • @TJStellmach
      @TJStellmach 11 หลายเดือนก่อน

      The rational root theorem tells us that the only possible rational roots of this polynomial are 1 and -1. So, there must indeed be some multiplicity among 3 integer roots.

  • @arnavnautiyal3039
    @arnavnautiyal3039 11 หลายเดือนก่อน

    sir,can you please make a video on pentation.

  • @offgame1654
    @offgame1654 11 หลายเดือนก่อน

    whats decots rules of sines???

    • @PrimeNewtons
      @PrimeNewtons  11 หลายเดือนก่อน +1

      Descartes rule of signs

    • @offgame1654
      @offgame1654 11 หลายเดือนก่อน

      @@PrimeNewtons ohh thanks

    • @ingiford175
      @ingiford175 10 หลายเดือนก่อน +1

      It allows you to count real solutions by counting the signs of the polynomial (and the polynomial after substuting -x in for x)
      x is positive signs from largest to smallest power of x are: + + - -; Which has one change of sign, which means there is ONLY one positive solution (so the x=1 is not a double root)
      x is negative signs from largest to smallest power of x are (flip any sign that is on an odd power) : - + + -; Which has 2 changes of signs which means there are either 2 or 0 solutions. And he later shows that -1 is a double root and counts for both
      Rule of signs only tells you the MAX possible solutions, and that number can always be reduced by 2n since if you have real coefficients, they come in pairs, which was why we could not reduce the value of 1 since -1 solutions does not make sense.

  • @glorrin
    @glorrin 11 หลายเดือนก่อน

    I am not sure what make you switch background but I hope it is not a problem that would affect your life too much, be safe :)

  • @koenth2359
    @koenth2359 11 หลายเดือนก่อน

    Great episode. Loved the efficient synthetic division and the neat handwriting

  • @christiansantini5895
    @christiansantini5895 11 หลายเดือนก่อน

    I LOVE synthetic division

  • @zakinaqvi998
    @zakinaqvi998 8 หลายเดือนก่อน

    x^4(x^3+1)-1(x^3+1)=0

  • @ESeth-xb5cu
    @ESeth-xb5cu 11 หลายเดือนก่อน

    X=1

  • @nowaysikandar
    @nowaysikandar 11 หลายเดือนก่อน

    bring back chalk board