Derivative of Lambert W function

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 ธ.ค. 2024

ความคิดเห็น • 92

  • @ambikachhikara2154
    @ambikachhikara2154 ปีที่แล้ว +85

    Hi Mr. Ok! I had you as my Algebra 1 teacher back in middle school and remembered you had a TH-cam channel, and now I am in AP Calculus BC and your videos come in handy. It’s great to see that your channel has grown so much!

    • @blackovich
      @blackovich ปีที่แล้ว +19

      I remember you, Ambika! Good to hear from you! He also taught me Coding. Amazing teacher!

    • @PrimeNewtons
      @PrimeNewtons  ปีที่แล้ว +33

      Ambika, that is good to know. Please reach out if you need help. I am proud of your commitment to learning. Never stop learning!!!!!!

    • @PrimeNewtons
      @PrimeNewtons  ปีที่แล้ว +26

      You too?!! I am blessed.

    • @DragonX999
      @DragonX999 11 หลายเดือนก่อน +3

      ​@@PrimeNewtonsyou are a goat teacher man

  • @octs609
    @octs609 11 หลายเดือนก่อน +5

    I do not know anything of calculus, and man I hated math, but for some odd reason, I can not help, but be so intrigued. I blame my educators for me being so bad at math, but also so uninspired and uninterested, after all I was a child, but I commend you for revitalizing my love for math. Your a godsend mate.

  • @Misteribel
    @Misteribel ปีที่แล้ว +18

    The trick you apply by taking the derivative on both sides (9:10), then using the product rule, and get back a component that's itself containing the derivative (W'(x)) really caught me off guard. So simple and so useful! It allows you to find the derivative of the productlog function by inference, using basic high school differentiation rules and never really differentiating the function itself directly.

    • @PrimeNewtons
      @PrimeNewtons  ปีที่แล้ว +5

      Great tip!

    • @looney1023
      @looney1023 10 หลายเดือนก่อน +2

      Implicit differentiation is really powerful. You can use it to find the derivative of the inverse of any function working solely with the function itself.

    • @Musterkartoffel
      @Musterkartoffel 4 หลายเดือนก่อน

      Blew my mind too . The most obvious often is the most unseeable

  • @weo9473
    @weo9473 ปีที่แล้ว +162

    Next - integration of Lambert w function

    • @indescribablecardinal6571
      @indescribablecardinal6571 ปีที่แล้ว +16

      There is a cool equation of an integral of any function given by the integral of its inverse. And the integral of xe^x is trivial 🎉

    • @rolling_metalmatica
      @rolling_metalmatica ปีที่แล้ว +7

      Taylor Series Expansion for the Lambert W Function would be cool

    • @T1Pack
      @T1Pack ปีที่แล้ว

      0⅘

    • @Anmol_Sinha
      @Anmol_Sinha ปีที่แล้ว

      ​​@@indescribablecardinal6571do you mean that integral of f(x) wrt x = integral of f-1(x) wrt y? The comment asked for the integral of f-1(x) wrt x.
      To find the integral we can take the last step in prime newton's video, cross multiply for W(x) and integrate. We will get the answer already mentioned in this comment chain

    • @АннаСивер-г8м
      @АннаСивер-г8м ปีที่แล้ว

      There is a formula for integrating an inverse of a function,and W is just an inverse of xe^x,that wouldn't be that hard.

  • @koenth2359
    @koenth2359 11 หลายเดือนก่อน +1

    Your teaching skills are beyond normal!

    • @PrimeNewtons
      @PrimeNewtons  11 หลายเดือนก่อน

      Glad you think so!

  • @deathracoffee
    @deathracoffee ปีที่แล้ว +3

    I just wanted to say, I really like your voice. Keep on being awesome

  • @johnsellers5818
    @johnsellers5818 ปีที่แล้ว +1

    I've taken many math courses up through graduate school and you are the best teacher I've encountered.

  • @rivalhunters4666
    @rivalhunters4666 ปีที่แล้ว +6

    aah, u forgot the bracket at the end MY OCD IS TRIGGERED. A very good video :)

  • @laman8914
    @laman8914 ปีที่แล้ว +8

    We love how this dude is lecturing Math. Step-by-step. I have watched a number of Lambert W-function clips and they all start right away. But here, you are introduced to the fundamentals first and then how they apply to the actual problem. So, even if you have never heard of it, you can still follow the explanation. We wonder if he has this all hidden in his hat.

  • @rhc-weinkontore.k.7118
    @rhc-weinkontore.k.7118 2 หลายเดือนก่อน

    This is fun. Prime Newtons, you are a really great teacher.

  • @remopellegrino8961
    @remopellegrino8961 ปีที่แล้ว

    TH-cam needs more Math people like you and Michael Penn

  • @kusuosaiki367
    @kusuosaiki367 ปีที่แล้ว

    I have watched few of your videos. As a Math student, I really find these interesting. Keep it up good sir.

  • @lambertWfunction_
    @lambertWfunction_ 6 หลายเดือนก่อน

    goated teacher man, great explanation

  • @johannaselbrun
    @johannaselbrun 11 หลายเดือนก่อน

    Gracias por apoyarme y me gusta tu trabajo mucho

  • @sushilchopra7708
    @sushilchopra7708 3 หลายเดือนก่อน

    Nice work indeed

  • @biswambarpanda4468
    @biswambarpanda4468 ปีที่แล้ว +1

    You are superb sir

  • @Ron_DeForest
    @Ron_DeForest ปีที่แล้ว

    I have to say that’s an amazingly fast turnaround. Request a video one day, get it the next. Wasn’t quite what I was hoping though. Was really hoping for a deep dive into how it actually works. There’s more to it besides being very convenient. If you use the function on a calculator it comes up with an answer.

  • @jadenredd
    @jadenredd ปีที่แล้ว +1

    good video today unc 👍🏾

  • @ikhsanmnoor8589
    @ikhsanmnoor8589 ปีที่แล้ว

    Then I meet this really good explanation

  • @ferretcatcher2377
    @ferretcatcher2377 7 หลายเดือนก่อน

    This is elegant mathematics. ❤ the use of the chalkboard. Reminds me of my salad days at university.

  • @AzharLatif-d4z
    @AzharLatif-d4z ปีที่แล้ว +2

    Admire your love for Mathematics. This runs through your veins. This in turn is a reflection of your love for every learner under your wings. Here we could revisit Kuert Goedel to probe his incompleteness theorem which classifies three possibilities for solutions given Lambert W Function. No solution exists, and new tools are to be discovered. Lambert W Function only offers an endless loop of no empirical value. Stay Blessed.

  • @MASHabibi-d2d
    @MASHabibi-d2d 11 หลายเดือนก่อน

    Thanks for an other video...master

  • @VincentGPT-lol
    @VincentGPT-lol ปีที่แล้ว

    Interesting lesson today 🤓✍️

  • @Ferraco05
    @Ferraco05 11 หลายเดือนก่อน

    The "third" version really just gives you back the first version.
    On another note, you could write a "fourth" version:
    d/dx [ln(W(x))] = 1/[x(1+W(x))]

  • @donsena2013
    @donsena2013 7 หลายเดือนก่อน

    Quite an analysis !

  • @giorgiobarchiesi5003
    @giorgiobarchiesi5003 10 หลายเดือนก่อน +1

    Tank you for the video! But I wonder if it would make sense using the rule of the derivative of the inverse of a function. If I remember correctly, it should be the reciprocal of the derivative of the function. For a monotone function like this, it should work just fine.

    • @PrimeNewtons
      @PrimeNewtons  10 หลายเดือนก่อน

      Yes. That works, too.

  • @MASHabibi-d2d
    @MASHabibi-d2d 11 หลายเดือนก่อน

    از شما وبزنا شما متشکرم

  • @EvilSandwich
    @EvilSandwich ปีที่แล้ว +5

    Thank you. So many people covered this before but they tend to just glaze over a lot of the simplification. Which usually would be fine, but for a function like this, it just feels like their skipping steps and I'm grateful you took your time and explained every step.
    Any plans to explain how to integrate W(x) in a future video too?

  • @CalculusIsFun1
    @CalculusIsFun1 ปีที่แล้ว +3

    Alternatively you could have used the formula for inverse functions derivative based on the regular function.
    If y = f^-1(x) then f(y) = x
    1 = f’(y) * dy/dx
    Dy/dx = 1/f’(y)
    y = f^-1(x)
    Therefore the derivative of any inverse function can be represented using its none inverse counterpart as dy/dx = 1/f’(f^-1(x))
    Let apply this to lambert.
    The derivative of xe^x = e^x(1 + x)
    so d/dx(w(x)) = 1/f’(w(x)) where f’ is e^x(1 + x)
    So derivative of the lambert function is 1/(e^w(x) * (1 + w(x))

    • @senkum1000
      @senkum1000 11 หลายเดือนก่อน

      I ALSO MADE THAT FORMULA

  • @brian554xx
    @brian554xx ปีที่แล้ว

    )
    I felt compelled to indicate that.

  • @jonathanv.hoffmann3089
    @jonathanv.hoffmann3089 ปีที่แล้ว +1

    🎉🎉🎉

  • @anglaismoyen
    @anglaismoyen ปีที่แล้ว +1

    You forgot to close the bracket at the end. Faith in this channel destroyed. Nah, just kidding. Beautiful derivative.

    • @PrimeNewtons
      @PrimeNewtons  ปีที่แล้ว

      Thanks for keeping the faith 🤠

  • @shshshshsh7612
    @shshshshsh7612 ปีที่แล้ว +6

    for the third version, we see W'(x)(e^W(x) + W(x)e^W(x)) = 1
    but W(x)e^W(x) = x by definition, so W'(x)(e^W(x) + x) = 1. so W'(x) = 1/(e^W(x) + x)

  • @davefried
    @davefried ปีที่แล้ว

    how would you write the answer in terms of the original equation that the lambert function is based upon?

  • @chengkaigoh5101
    @chengkaigoh5101 ปีที่แล้ว +5

    Is this possible by first principle?

    • @nanamacapagal8342
      @nanamacapagal8342 ปีที่แล้ว +3

      You can use this definition:
      lim_a->x (W(a) - W(x))/(a-x)
      Then substitute a = be^b
      x = ye^y
      On one specific branch at a time this substitution is okay
      Then it's lim_b->y (b - y)/(be^b - ye^y)
      = 1 / lim_b->y (be^b - ye^y)/(b - y)
      = 1/ (d/dy (ye^y))
      So if you can get the derivative of xe^x by first principles then you're all clear
      This actually generalizes:
      d/dx f¯¹(x) = 1/f'(f¯1(x))

    • @wafflesaucey
      @wafflesaucey 6 หลายเดือนก่อน

      @@nanamacapagal8342would using this formula cover both of the real branches of the W function?

  • @KannaKamui21000
    @KannaKamui21000 10 หลายเดือนก่อน

    derivative of W(x) is aesy, it's W'(x) !
    Apart of that little joke, thanks for sharing us your knowledge !

  • @overlordprincekhan
    @overlordprincekhan 11 หลายเดือนก่อน

    TBH, Another elegant solution would be to use taylor series of e^x and multiplying it with x would give you lambert w function. Then differentiating the series should yield the derivative of Lambert W function

  • @aguyontheinternet8436
    @aguyontheinternet8436 ปีที่แล้ว +1

    12:47 if you did that and cancelled out the W(x) on the top and bottom, you'd end up with the first equation.

  • @priyansharma1512
    @priyansharma1512 ปีที่แล้ว +1

    Great vid as always but that bracket missing from the second solution has me so annoyed 😭😭

  • @amtep
    @amtep ปีที่แล้ว +9

    You could also instead of factoring out the e^W(x), replace the W(x)e^W(x) with just x. Then you get 1 / (e^W(x) + x)

    • @TheLukeLsd
      @TheLukeLsd ปีที่แล้ว

      eu faço deste jeito também. é mais fácil.

    • @Musterkartoffel
      @Musterkartoffel 4 หลายเดือนก่อน

      I think thats the third version (but I also thought that way)

  • @mazabayidolazi
    @mazabayidolazi ปีที่แล้ว

    Good

  • @lazaredurand6675
    @lazaredurand6675 6 หลายเดือนก่อน +2

    "Never stop learning..." is actualy a wrong slogan because IA can actualy learn non-stop and they will never be living being. The good one would be "Never stop to search/try/be curious". IA will never be curious, curiosity is the proof that you are living.

  • @inceden_Matematik
    @inceden_Matematik ปีที่แล้ว

    Soo good :)))

  • @LEDSlights
    @LEDSlights หลายเดือนก่อน

    I love your smile.

  • @vnms-
    @vnms- 11 หลายเดือนก่อน

    I just did: W(x) = y -> x = ye^y then derived, so: 1 = dy/dx • e^y + ye^y •dy/dx -> 1 = dy/dx(e^y + ye^y -> dy/dx = 1\(e^y(1+y)
    Since y = W(x) and dy/dx = W’(x) that means: W’(x) = 1/(e^W(x)(1+W(x))

  • @suyunbek1399
    @suyunbek1399 ปีที่แล้ว

    how do you use the derivative of the inverse function formula here?
    derivative of x*e^x is
    (x+1)*e^x
    then what?

    • @anotherelvis
      @anotherelvis ปีที่แล้ว

      If f(x) is the inverse of W(x), then the formula for the derivative of the inverse gives us
      W'(x)=1/f'(W(x))
      Now insert f'(x) = (1+x)*e^x to get
      W'(x)=1/((1+W(x))*e^W(x))

  • @RileyGallagher-ce4rq
    @RileyGallagher-ce4rq 9 หลายเดือนก่อน

    You can also do this:
    (I'm letting y = W(x) for the sake of not writing W(x) 7 times)
    dy/dx = (dx/dy)⁻¹ = [d(yeʸ)/dy]⁻¹ = 1/eʸ(y+1)

  • @dhiaguerfi2602
    @dhiaguerfi2602 ปีที่แล้ว

    6:44 f must be bijective

  • @DroughtBee
    @DroughtBee ปีที่แล้ว +1

    I really don’t like how you didn’t close your parentheses at the end on the denominator. Otherwise great video!

  • @navyntune8158
    @navyntune8158 4 หลายเดือนก่อน

    Third derivative: W'(x) = 1/(e^W(x) + 1)

  • @salvatorecharney8180
    @salvatorecharney8180 11 หลายเดือนก่อน

    Because [W(x)]e^[W(x)] is just x, can you write the final answer:
    1/(e^[W(x)] + [W(x)]e^[W(x)])
    As this:
    1/(e^[W(x)] + x)

  • @alexandruandercou9851
    @alexandruandercou9851 ปีที่แล้ว

    W function , it just gives you back your ex 😂

  • @donwald3436
    @donwald3436 ปีที่แล้ว

    Are you related to Omar Epps you could be his brother lol.

  • @usernameisamyth
    @usernameisamyth 11 หลายเดือนก่อน

  • @ParasocialCatgirl
    @ParasocialCatgirl ปีที่แล้ว

    Now, where's the L function 🙃