Limit of a rational exponential function

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ธ.ค. 2024

ความคิดเห็น • 49

  • @CroneoRegion
    @CroneoRegion 9 หลายเดือนก่อน +19

    when you got 6+6t, shouldn't it be 6+9t? the answer would still be the same, but I thought that would be the right step

    • @ounaogot
      @ounaogot 9 หลายเดือนก่อน

      Why 9t? Understood why it was 6t

    • @dutchie265
      @dutchie265 9 หลายเดือนก่อน

      Doubling 3 will give 6, so why would it be 9?

    • @TheLukeLsd
      @TheLukeLsd 9 หลายเดือนก่อน

      Isso mesmo. Eu estava indo comentar sobre essa parte.

    • @TheLukeLsd
      @TheLukeLsd 9 หลายเดือนก่อน +3

      @@dutchie265 não é o dobro. quando se iguala as bases fica 3(1+3t)+3= 3+9t+3=6+9t. ele se confundiu porque por coincidência 2*2= 2². mas a generalização de d/dt [ ln(1+at) + at/(1+at)] = (2a+a²t)/(1+at)². ele pensou em (2a+2at)/(1+at)² erroneamente.

    • @muhammadridholatif8817
      @muhammadridholatif8817 9 หลายเดือนก่อน +5

      Yes its 6+9t i notice abkut it also from (3(1+3t)+3)/(1+3t)²

  • @JourneyThroughMath
    @JourneyThroughMath 9 หลายเดือนก่อน +11

    This is one of those "oh yeah!" Problems. I was never assigned anything like this in my calculus days. Nor have I assigned anything like this. So I looked at this problem and didnt even know where to start. But every step of the way, my response was "oh yeah"..."oh yeah"...and so on.

  • @nothingbutmathproofs7150
    @nothingbutmathproofs7150 9 หลายเดือนก่อน +1

    That problem was completely crazy. It seemed to be a battle between you and the limit the whole time. As always, in the end, you won!

  • @BetaLoversYT
    @BetaLoversYT 9 หลายเดือนก่อน +5

    I have to do multiple variable analysis in university, but this videos really help in dealing with hard problems, thanks for the video!

  • @Viesto1980
    @Viesto1980 9 หลายเดือนก่อน +1

    You are great! Regards from Poland!

  • @juv7026
    @juv7026 9 หลายเดือนก่อน +3

    (1+ax)^x-1=(x/1!)*(ax)^1+((x)(x-1)/2!)*(ax)^2+…
    Lowest exponent possible x^2 is only given by first term, so neglect other powers (a=2,3)
    So given limit is a1/a2=2/3
    Took 10 seconds

  • @saarike
    @saarike 7 หลายเดือนก่อน

    This is like magic!!! Thank you.

  • @michaelbaum6796
    @michaelbaum6796 9 หลายเดือนก่อน +2

    Very nice limit👍

  • @lukaskamin755
    @lukaskamin755 9 หลายเดือนก่อน +3

    Wow that's kinda a tricky one, it looks terrifying and it appeared to be quite tough at the end🎉. But interesting.
    I just would recommend to everyone for future , if you see the alike expressions and you have to do some complex stuff with them, like differentiation, simply substitute that number which is different with some letter constant, say a, and at the end you can calculate what it would be if a=2 and a=3, just to be on the safe side. I'm also lazy, but if it comes to passing some exam , that error could cost too much, so I would definitely do that. Luckily that didn't effected the result😊

  • @LORDLDUQ
    @LORDLDUQ 9 หลายเดือนก่อน

    The best math channel 👍

  • @cameronspalding9792
    @cameronspalding9792 9 หลายเดือนก่อน +2

    The way I would approach it is to work out (1+2t)^t = exp(ln(1+2t)*t). For small values of t:
    ln(1+2t)*t = t*(2t + O(t^2))
    = 2*t^2 + O(t^3). This implies
    (1+2t)^t = 1 + 2 t^2 + O(t^3). Using a similar argument: we have that
    (1+3t)^t = 1 + 3 t^2 + O(t^3) for small values of t.
    Using the above approximations: we see that the expression we want to take limits for can be written as
    ((1+2t)^t-1)/((1+3t)^t-1)
    = (2 t^2 + O(t^3))/(3 t^2 + O(t^3))
    = (2 + O(t))/(3 + O(t)) for small values of t. This expression tends to 2/3 as t tends to 0.

    • @igorgorkoff
      @igorgorkoff หลายเดือนก่อน

      Why exp(2*t^2 + O(t^3)) = 1 + 2 t^2 + O(t^3)?
      I think you just use Taylor or Maclaurin series, but it should be shown to be clear.

    • @cameronspalding9792
      @cameronspalding9792 หลายเดือนก่อน

      exp(2*t^2 + O(t^3)) = exp(2*t^2)*(1+O(t^3))= (1+2*t^2+O(t^4))*(1+O(t^3))
      = 1 + 2*t^2 + O(t^4) + O(t^3) =
      1 + 2*t^2 + O(t^4)

  • @surendrakverma555
    @surendrakverma555 8 หลายเดือนก่อน

    Very good lecture Sir. Thanks 👍

  • @muhammadridholatif8817
    @muhammadridholatif8817 9 หลายเดือนก่อน +9

    For the last bottom it should be 6+9t from (3(1+3t)+3)/(1+3t)²
    The answer is just the same tho cus it will just 0 at the end 😂😂

  • @mirzatayerejepbayev8367
    @mirzatayerejepbayev8367 9 หลายเดือนก่อน

    Thank you. It is very well done

  • @davidcroft95
    @davidcroft95 9 หลายเดือนก่อน +3

    At 6:16 could we use binomial expansion? Since t goes to zero you can neglect "high" power of t (like t cubed) and, more importantly, the undetermined form vanish

    • @comrade_marshal
      @comrade_marshal 9 หลายเดือนก่อน +1

      We can do it. But binomial would be unnecessary here

    • @davidcroft95
      @davidcroft95 9 หลายเดือนก่อน

      @@comrade_marshal of course you don't need the whole expansion, you just need the first term (like when you use the Taylor series' trick)

    • @comrade_marshal
      @comrade_marshal 9 หลายเดือนก่อน

      @@davidcroft95 I got you, but what I meant to say is that binomial expansion will work, but that would be an overkill in this question

  • @Edsonrsmtm
    @Edsonrsmtm 9 หลายเดือนก่อน

    Beatifull lim!!!

  • @highestintheroom-mn7lt
    @highestintheroom-mn7lt 9 หลายเดือนก่อน

    This one was a banger 🔥

  • @AshokKumar-ul6dg
    @AshokKumar-ul6dg 8 หลายเดือนก่อน

    For applying L'Hospital:a rule, why use substitution?
    By directly differentiating, and substitution, (nr. Treated as u^t-1, we get 2/3.

  • @dan-florinchereches4892
    @dan-florinchereches4892 2 หลายเดือนก่อน

    Can't we use the following definition if exponential:
    Lim(n->inf)= (1+1/n)^(n)=e then if we have the limit (1+a/n)^n=(1+1/(n/a))^(n/a×a)=((1+1/(n/a))^(n/a))^a=e^a in the limit
    Then by forcing out X as common factor from the parenthesis we get ( e^2-1)/(e^3-1)

  • @MASHabibi-d2d
    @MASHabibi-d2d หลายเดือนก่อน

    It was a very silly question, professor....thank

  • @igorgorkoff
    @igorgorkoff หลายเดือนก่อน

    Oh, you’ve used L'Hôpital's rule, that lim f(x)/g(x) = lim f’(x)/g’(x), but you didn’t show, that all necessaries are satisfied. To be honest the limit with first derivatives doesn’t exist (or mb it exists, but you need to proof it), so I’m not sure you can use this rule in this case.
    Probably it’s much easier to use Taylor series for exponent in this case.

    • @igorgorkoff
      @igorgorkoff หลายเดือนก่อน

      + series for ln () of course

  • @lukaskamin755
    @lukaskamin755 9 หลายเดือนก่อน

    I didn't got the idea about infinite root of infinity, from where can one derive it to be zero?

    • @PrimeNewtons
      @PrimeNewtons  9 หลายเดือนก่อน +1

      It's 1 not zero

    • @lukaskamin755
      @lukaskamin755 9 หลายเดือนก่อน

      @@PrimeNewtons oops, a typo, you know, thinking about one thing and typing something different Lol. Anyways I don't know that limit, why it's 1? Is it some known limit? Give me a hint, thanks

  • @Moj94
    @Moj94 9 หลายเดือนก่อน

    nice

  • @Subham-Kun
    @Subham-Kun 8 หลายเดือนก่อน

    Girls : Taylor Swift & Billie Eillish are the best
    Boys : Lil Nas X & Jason Derulo are the best
    Mathematicians : PRIME NEWTONS' INTRO IS THE BEST!!!!!!!!!!!!!!!!!

  • @artdeheer6115
    @artdeheer6115 9 หลายเดือนก่อน

    2t(1+2t)^(t-1)

  • @mustaphaballaji4628
    @mustaphaballaji4628 9 หลายเดือนก่อน

    You are gorgeous.

  • @downrightcyw
    @downrightcyw 6 หลายเดือนก่อน

    Giant 1

  • @vitalytolochanov4475
    @vitalytolochanov4475 9 หลายเดือนก่อน

    we found t, not x

  • @comdo777
    @comdo777 9 หลายเดือนก่อน +1

    asnwer=1+2/5 isit

    • @comdo777
      @comdo777 9 หลายเดือนก่อน

      ah ah asnwer=2/3 isit

    • @lukaskamin755
      @lukaskamin755 9 หลายเดือนก่อน

      aNSwer , anyways wrong 😅