Nice Olympiad Math | x^2-x^3=12 | Nice Math Olympiad Solution

แชร์
ฝัง
  • เผยแพร่เมื่อ 22 ธ.ค. 2024
  • This mathematical challenge is an Olympiad question. In solving this Olympiad polynomial equation I will guide you on some unique steps and techniques to apply.
    I will introduce to you two special algebraic identities that will give a short cut to solving this in a short period of time.
    #olympiadmaths #olympiadquestion #onlinemathstv #olympiadpreparation #onlinemaths #mathchallenge #maths #mathematics #challengingmathproblems #onlinemathtutor #challengingquestions #olympiad2022 #olympiadmathematicscompetition #olympiadmathematicalquestion #polynomials #polynomialequations #polynomialsandfactorisation9thclassapandts #polynomialsclass9

ความคิดเห็น • 1.1K

  • @LarsEllerhorst
    @LarsEllerhorst ปีที่แล้ว +27

    It's pretty clear right from the start that x has to be negative, otherwise the right term would be

    • @jagzey
      @jagzey 10 หลายเดือนก่อน

      what about the complex solutions

    • @LarsEllerhorst
      @LarsEllerhorst 10 หลายเดือนก่อน +1

      @@jagzey Whatever complex number you put into x, it will never be equal to 12.

    • @Rx800.0
      @Rx800.0 9 หลายเดือนก่อน

      You can find it up to a certain number by trial and error. But what do you do when asked for a larger number?

    • @LarsEllerhorst
      @LarsEllerhorst 9 หลายเดือนก่อน

      @@Rx800.0 Sure, most of such equations needs to be calculated properly, but knowing how such functions progress helps you with a good prediction where the solution should be. It will be tricky if the result is a complex value.

    • @СергійРуденко-ц1ь
      @СергійРуденко-ц1ь 7 หลายเดือนก่อน

      Ми не домовлялися, а я вирішив таким же способом за 20с

  • @kuberannaganathan5244
    @kuberannaganathan5244 7 หลายเดือนก่อน +2

    Thanks!

  • @vyacheslav-yarmak
    @vyacheslav-yarmak ปีที่แล้ว +5

    Графічно. Побудуємо графіки y=x^2 та y=x^3+12. Вони мають одну точку перетину, очевидно аргумент відємний. Значить рівняння має один корінь. Підбираємо, х=-2. Все !!

    • @Keraxe440dxi
      @Keraxe440dxi 11 หลายเดือนก่อน +1

      فقط القليل من التخمين بوضع 12=4×3

  • @JAMESYUN-e3t
    @JAMESYUN-e3t ปีที่แล้ว +15

    Excellent math question and smart expanation. Muchas gracias

  • @todaaki4109
    @todaaki4109 ปีที่แล้ว +180

    ” X² ーX³ =12” 
    1st left  → X² ーX³ = X²(1ーX)    
    2nd right → 12=4×3= 4×(1+2) )= ( -2) ² ×(1ー ( -2) )
    3rd X= -2

    • @modernsabri6654
      @modernsabri6654 ปีที่แล้ว +15

      The equation third degree have three roots (-2) not enough??
      So he gets another two roots, Imaginary roots.😊

    • @dajo3032
      @dajo3032 ปีที่แล้ว +1

      Well done 👏

    • @todaaki4109
      @todaaki4109 ปีที่แล้ว +1

      >@@dajo3032
      Thank you so much.

    • @mohammadhosseinshahidi7330
      @mohammadhosseinshahidi7330 ปีที่แล้ว +3

      I solved it the same as you

    • @zahidulislam2578
      @zahidulislam2578 ปีที่แล้ว +1

      I have an another easy way to solve it. And i prove it easyly

  • @ichdu6710
    @ichdu6710 ปีที่แล้ว +4

    it's easily proofed, that one obvious solution is x= - 2
    alternative solution 1:
    divide x³ -- x² + 12 by x+2 with the so called long division (polynomial division) to find the polynomial of degree 2. solve this quadratic equation to receive two complex solution if needed.
    alternativ 2:
    x³ -- x² + 12 = ( x +2)(x² + ax + 6). find the parameter a by multplication, and comparing both sides.

  • @JPTaquari
    @JPTaquari ปีที่แล้ว +15

    X = -2
    X² * ( 1 - X¹ ) = 12 ( para dar esse valor tem que ser 4 * 3 = 12
    Então, (-2)² - (-2)³ = 12
    +4 + 8 = 12
    Bingo from Brazil!!!!

    • @qwe-my3hu
      @qwe-my3hu ปีที่แล้ว

      인도늠들이 수학을 잘한다고 들었는데 참말이네요..그런데 그 지경으로 살고 있는게 이상하네요

    • @jaylooppworld381
      @jaylooppworld381 9 หลายเดือนก่อน

      Wrong

    • @tistrya-424
      @tistrya-424 8 หลายเดือนก่อน

      exactly, thats what i wanted to write here - Noice

  • @fernandomembrilacortez4768
    @fernandomembrilacortez4768 9 หลายเดือนก่อน +1

    bommmbaaaa!!!! que fantástico, muy bien profesor. su didáctica es muy clara y enseñadora. muchas gracias

  • @luisalbertogonzalez3586
    @luisalbertogonzalez3586 10 หลายเดือนก่อน +11

    WOW! I LIKED THIS VIDEO...GOD BLESS YOU...

  • @jovankovacevic3972
    @jovankovacevic3972 9 หลายเดือนก่อน +1

    Explained in very good way. Thank you so much!

  • @maurotivolesi
    @maurotivolesi ปีที่แล้ว +14

    How nostalgic for school! I still remember the amazement when I realized that I was coming to the solution and the joy when I found it. It was just an equation in the end, but for me it was like conquering the world

  • @AnantKumar-on1rw
    @AnantKumar-on1rw 8 หลายเดือนก่อน +1

    Great explanation

  • @kevincozens6837
    @kevincozens6837 ปีที่แล้ว +6

    When some terms were regrouped and put inside brackets the second line from the bottom left isn't correct but the line below is correct. It wasn't properly explained as to what was going on at that point. Someone who may be a bit weak in their math skills might get confused about that part and why the sign was changed from - to +.

    • @شركةالهرم-ذ2و
      @شركةالهرم-ذ2و 9 หลายเดือนก่อน

      YES,my brother,he has bigggggggggggg fault
      and his solution is completly fault

  • @joyfaustina6979
    @joyfaustina6979 2 หลายเดือนก่อน

    I love your method of teaching. Thanks

  • @leylaaghazadeh9185
    @leylaaghazadeh9185 ปีที่แล้ว +15

    Much appreciated. There' s also a simpler way to come up with the answer. If factoring out x^2 , then we have:
    x^2 (1-x)= 12
    There would be just one possible choice left out of three positive pair factors of 12 that includes a perfect square. i.e. 4 and 3. So:
    x^2= 4 and (1-x)= 3
    The only common answer of the above two equations is then: x=-2

    • @onlineMathsTV
      @onlineMathsTV  ปีที่แล้ว +2

      Bravo!!! you are good at it.

    • @leylaaghazadeh9185
      @leylaaghazadeh9185 ปีที่แล้ว +1

      Thank you sir 🙏

    • @randymills2660
      @randymills2660 11 หลายเดือนก่อน +2

      This is just a guess and check method. The preferred way to solve any polynomial equation is to solve for 0 first.

    • @Roman_Ray
      @Roman_Ray 11 หลายเดือนก่อน +1

      Honestly, knowing that x has to be negative is a dead giveaway, cos it can't be positive (cos subtracting a cubed number (bigger) from the same but squared (smaller) number yet still getting a positive result => x has to be negative), and we also know it's not "1".
      Hmm what number comes next?

    • @Drunkenmaster632
      @Drunkenmaster632 11 หลายเดือนก่อน

      ​@@randymills2660Neither is that a guess and check not is solving for 0 is the preferred way

  • @handwritingcreator
    @handwritingcreator 8 หลายเดือนก่อน +1

    Great solution, Dear

  • @pasixty6510
    @pasixty6510 ปีที่แล้ว +11

    If the goal of the olympiad is to solve the problem quickly, I would apply numerical theory first. It’s obvious that x^3 is more than x^2 when x is positive. So the equation can only be solved with x

  • @bencheng9083
    @bencheng9083 ปีที่แล้ว +32

    Nice. I would use a formal method to solve this problem: 1) observe -2 is a real root. 2) divide x^3-x^2+12 by x+2, the quotient then is Q(x)=x^2-3x+6, now it's quite easy to find other two complex roots of Q(x)=0.

    • @georiashang1120
      @georiashang1120 ปีที่แล้ว

      that quotient method is really usefull solving high power equations.

    • @hn4806
      @hn4806 ปีที่แล้ว

      Yes, my self, I'd always do that way because, in f(x)=0 where f(x) of power of 3 (let's denote it with f3(x)) must be in f1(x)*f2(x) to be solved.
      If the second f2(x) is factorized to f1(x)*f1(x), then 3 solutions all real right away. If not, f2(x) gives 2 solutions from the formula, either real or imaginary.
      That way we don't need x**3 +/- y**3 = (x +/- y)(x**2...) formula. The question is how fast you find the number for the f1(x) i.e. (x - ?). Typically the number
      is small, 1, 2, 3 or -1, -2, -3. Seldom odd case such as -7. I want to think of a systematic way to come up with this number, rather than applying try-and-hit way...

    • @uthoshantm
      @uthoshantm ปีที่แล้ว

      Well, that's assuming you can pick up the -2 by inspection.

    • @CUSELİSFAN
      @CUSELİSFAN ปีที่แล้ว

      no, you dont need inspection. Descartes' Rule of Signs tells you that there IS one negative root.
      They can only be -1, -12, -2, -6, -4, -3.
      Try the edge cases first, that is -1 and -12.
      You see that it must be closer to -1.
      Try -2. That works.
      @@uthoshantm

    • @kimba381
      @kimba381 ปีที่แล้ว +1

      @@uthoshantm In this case its pretty easy. x is clearly negative, and x^2 is a factor of 12, must be 4.
      If it had been, say 10 rather than 12, whole different kettle of fish.

  • @bobwineland9936
    @bobwineland9936 ปีที่แล้ว +23

    By finding that (-2) is a real root we can use long division X^3-X^2+12/X+2 = X^2-3X+6 and then get the imaginary roots. Thank you sir for what you do. 14:2

  • @chirbhadam
    @chirbhadam 10 หลายเดือนก่อน +2

    Thanks for your efforts

  • @markdagley4213
    @markdagley4213 ปีที่แล้ว +78

    The last 2 lines on the first column had errors, the last, serendipitously 'correcting' the second to last. In the second to last you forgot to make the 2^3 positive inside the parenthesis. In the last you forgot to make (from the erroneous equation) the x^3 negative. So erroring twice the 'corrected' the equation on the last line. So just erase the second to last equation and your good! All is well that ends well. You passed the test, making 2 bad operations!!!!

    • @soundsoflife9549
      @soundsoflife9549 ปีที่แล้ว +1

      Yeah ! I was wondering how x^3-2^3=x^3+2^3 !

    • @proislam-co6pg
      @proislam-co6pg ปีที่แล้ว +4

      only the second last is wrong

    • @markdagley4213
      @markdagley4213 ปีที่แล้ว

      That depends on how you look at it. To go from the second to last to the last is wrong but it corrects the second to last wrong by being wrong. So if you remove the second to last, only then is the last right.@@proislam-co6pg

    • @uygarbocutoglu4465
      @uygarbocutoglu4465 ปีที่แล้ว +1

      luckly i decided to read the comments before judjing my retirred maths abilities

    • @ceccilioantoniosilvaayala4127
      @ceccilioantoniosilvaayala4127 11 หลายเดือนก่อน

      Cuando abris paréntesis por primer vez, 2 al cubo pasa a positivo.

  • @joseangelocidreiradaconcei2505
    @joseangelocidreiradaconcei2505 5 หลายเดือนก่อน

    Muito bom, parabéns. Continue postando vídeos. 👏👏👏

  • @volasvolas3951
    @volasvolas3951 ปีที่แล้ว +8

    По теореме о рациональных корнях уравнения можно сразу найти корень х=-2, затем поделить исходный многочлен на х+2, а дальше решить оставшееся квадратное уравнение. Стандартная школьная задача, что тут олимпиадного? :)

    • @dough9512
      @dough9512 ปีที่แล้ว

      But division by zero is undefined?😮

  • @OwolabiEmmanuel-ke1iz
    @OwolabiEmmanuel-ke1iz 7 หลายเดือนก่อน +1

    I love your teaching skills

  • @lopezpablo88
    @lopezpablo88 ปีที่แล้ว +3

    No entiendo porque tantos comentarios negativos. Es cierto que el problema es sencillo para ser de una olimpiada de matemáticas pero nunca dijo de qué nivel es... Además la solución es correcta y hay varias formas de llegar a ella. "Intuir" que -2 es una solución y luego factorizar es fácil pero, para mi, tiene más logro llegar a esa conclusión por una vía matemática. Y en las olimpiadas eso se valora.

    • @onlineMathsTV
      @onlineMathsTV  ปีที่แล้ว +2

      @lopezpablo88, I think you deserve a standing and a clapping ovation from everyone @OnlinemathsTV as far this math challenge comments are concerned, hahahaha...
      I love it when people criticize and correct other constructively with a deep understanding of the point/s in question.
      Here, you have shown a deep level of mathematical prowess.
      Thanks a million for your wonderful contribution to the growth of this platform/channel.
      We all here love and salute your choice of words and wisdom in handling issues sir.
      Maximum respect and deep love to you from all of @OnlinemathsTV sir....❤️❤️💖💖💖💕💕😍😍😍.

  • @aryupersia6286
    @aryupersia6286 11 หลายเดือนก่อน +2

    Thank you, You are an excellent!

  • @jan-willemreens9010
    @jan-willemreens9010 ปีที่แล้ว +8

    ... Good day sir, We could also solve the Complex part as follows: X^2 - 3X + 6 = 0 [ Applying Completing the Square ] ... (X - 3/2)^2 - 9/4 + 24/4 = 0 ... (X - 3/2)^2 = - 15/4 ... X - 3/2 = +/- SQRT(- 15/4) ... X - 3/2 = +/- SQRT((- 1)* 15/4) [ Applying i^2 = - 1 ] ... X - 3/2 = +/- SQRT(15/4 * i^2) ... X2.3 = 3/2 +/- SQRT(15) * i / 2 ... X2 = (3 + SQRT(15) * i) /2 v X3 = (3 - SQRT(15) * i) / 2 ... X2 and X3 are COMPLEX CONJUGATE SOLUTIONS, but are certainly NOT IMAGINARY SOLUTIONS, because in general Z = A + B * i is always COMPLEX, and when A = 0, then Z = B * i is both COMPLEX as IMAGINARY! In short : The set of Imaginary numbers (Z = B * i) is a SUBSET of the set of Complex numbers (Z = A + B * i ) ... great presentation by the way sir, and thanking you for your instructive math efforts ... best regards, Jan-W

  • @peterbyrne6394
    @peterbyrne6394 8 หลายเดือนก่อน

    Very good explanation. Thank you.

    • @onlineMathsTV
      @onlineMathsTV  7 หลายเดือนก่อน

      Glad it was helpful!

  • @Qazwsx-m3f
    @Qazwsx-m3f ปีที่แล้ว +7

    х^3-х^2-12=0
    Челочисленные корни являются делителями 12.
    х=-2 является
    Схема Горнера (или деление многочлена на многочлен) и получаем квадраратное уравнение с D

    • @hannukoistinen5329
      @hannukoistinen5329 ปีที่แล้ว +1

      What!!! Write normal letters or shut up and stay in Soviet union!!!

    • @ДакаВо
      @ДакаВо ปีที่แล้ว

      @@hannukoistinen5329 retarded yenkee lmao

    • @Pereseld
      @Pereseld ปีที่แล้ว

      @@hannukoistinen5329 I want to stay in Soviet Union)

    • @broomska1
      @broomska1 ปีที่แล้ว +2

      ​@@hannukoistinen5329А причем тут Советский союз?

    • @cortisol1801
      @cortisol1801 ปีที่แล้ว

      ​@@hannukoistinen5329junge, soviet Union ist schon lange vorbei. In welchem Jahr wohnst du?

  • @pbaroi5747
    @pbaroi5747 10 หลายเดือนก่อน +1

    HOW CAN YOU CHANGE SIGN FROM (-) TO (+) ON THE SEVENTH LINE FROM THE SIXTH LINE WITHOUT OPENING THE FIRST BRACKET (X-3...........) ?

  • @ЮлияСоловьева-б4щ
    @ЮлияСоловьева-б4щ ปีที่แล้ว +9

    Перенести все влево и исследовать функцию с помощью производной. Построить график и увидеть одну точку пересечения . Это -2. С помощью проверки убеждаемся , что -2 корень уравнения.

    • @lopezpablo88
      @lopezpablo88 ปีที่แล้ว

      Ingenioso. Y si, hay varios caminos válidos 😃

    • @Darius-kb9ew
      @Darius-kb9ew ปีที่แล้ว +1

      То чувство, когда решил в уме😁

    • @neokripte
      @neokripte 11 หลายเดือนก่อน

      Так видно же что x отрицательный, там подбором решается за секунду

    • @ЮлияСоловьева-б4щ
      @ЮлияСоловьева-б4щ 11 หลายเดือนก่อน +1

      @@neokripte да. Но ещё нужно доказать, что других корней нет.

  • @jyotibista9871
    @jyotibista9871 9 หลายเดือนก่อน +2

    Nice job

  • @wafiyashaikh2569
    @wafiyashaikh2569 ปีที่แล้ว +5

    well done sir , I learnt a lot

  • @SantoshNag-q2o
    @SantoshNag-q2o 4 หลายเดือนก่อน

    फेक्टर मेथडं है थोड़ा लम्बा है 12=-4-8 कर घात बनाकर हल करने से नया फन्डा समझ मे आया। Thankyou.

  • @pauljarju6127
    @pauljarju6127 ปีที่แล้ว +3

    Thank you sir

  • @hgilbert
    @hgilbert ปีที่แล้ว +26

    you made a mistake. to jump from x^2-2^2-x^3-2^3=0 to (x^2-2^2)-(x^3-2^3)=0 is very wrong.
    it should have been (x^2-2^2)+(-x^3-2^3)=0
    and then only you could have proceeded to (x^2-2^2)-(x^3+2^3)=0

    • @SeekingTheLoveThatGodMeans7648
      @SeekingTheLoveThatGodMeans7648 ปีที่แล้ว +2

      yes, a mistake... the intention seems to be "we will group" but the parens are wrong. The way, say, SyberMath shows the intention to group is by underlining first.

    • @richesekanem4525
      @richesekanem4525 ปีที่แล้ว +2

      There was a mistake but he recovered it

    • @alexrozenbom3430
      @alexrozenbom3430 ปีที่แล้ว

      i noticed it too.

  • @ClarisUgochukwu-mu9pj
    @ClarisUgochukwu-mu9pj 9 หลายเดือนก่อน

    I like your explication 💭❤️

  • @ЗдоровыйСчастливый
    @ЗдоровыйСчастливый ปีที่แล้ว +12

    Отлично так минус на плюс заменил, бро! 👍🏻

    • @dj_multiple_one
      @dj_multiple_one ปีที่แล้ว +1

      я тоже не понял как он так

    • @broomska1
      @broomska1 ปีที่แล้ว +1

      ​@@dj_multiple_oneДа никак. Просто словами проговорил, что типа так неправильно. И в следующей строке написал, как надо. Но неверное представление не убрал.

    • @mallonamolloly2569
      @mallonamolloly2569 9 หลายเดือนก่อน

      @@broomska1 Вот то, что не убрал - это большущий косяк! Вероятно у них в колхозе так учат.

  • @rcalabri
    @rcalabri 10 หลายเดือนก่อน

    Felicitaciones por el formidable desarrollo analitico. Sin embargo la solución (x=-2) adviene simplemente por tanteo una vez que te percatas de que DEBE ser un número negativo. Y el proceso mental para hallarla no lleva ni un minuto, sin necesidad de ser una especie de Ramanujan, ni tener un infinitesimo de su talento, por asi hablar

  • @sh0bla79
    @sh0bla79 ปีที่แล้ว +10

    wow. that was really cool! thank you for your videos

  • @chrissyday67
    @chrissyday67 8 หลายเดือนก่อน

    I'm a senior, ill in bed with flu and did this in less than a minute in my head - it's obvious from the equation that either x must be negative then you just need to fins a number that when it's square is added to it's cube yields 12 ( the fact it is negative means that minus the cube of it will become positive) is it not obvious that the number is 2? since 4 + 8 = 12. This is the third 'Olympiad' math question I've looked at this afternoon, being too unwell to do much else and all were easily do-able in my head rather than the long-winded solutions. I recently took a senior cognitive test (annual requirement at my age) and am amazed if this is how students are taught to solve these kind of puzlzles. Maybe I should start a "Granny shows you how" you tube series? 😆 Well I have learned something, I know I am not as quick-witted as I was 50 years ago, but I still have some of my marbles 😊

  • @celikkurtoglu3992
    @celikkurtoglu3992 9 หลายเดือนก่อน +4

    Very good exercise, thank you.

  • @glasssmirror2314
    @glasssmirror2314 3 หลายเดือนก่อน

    Pls sir how would calculate the exponents when the argument figure is too high.

  • @sanaeelalioui6980
    @sanaeelalioui6980 10 หลายเดือนก่อน +4

    Excelente

  • @fisicamatematicasprofewilliam
    @fisicamatematicasprofewilliam 11 หลายเดือนก่อน

    Excelente video. Nuevo suscriptor a tu canal. like gran video

  • @Kroner108
    @Kroner108 ปีที่แล้ว +15

    Задача решается за 5 секунд в уме... Вот бы у меня в школьные времена были такие простые задачи))

    • @mnnkaz0
      @mnnkaz0 ปีที่แล้ว

      здравствуйте, а как можно в уме быстро решить? объясните, пожалуйста!

    • @Kroner108
      @Kroner108 ปีที่แล้ว +4

      @@mnnkaz0обратить внимание на 4 + 8 = 12 и на минус в выражении, и просто понять что х = -2.

    • @professeurkeitagaye3118
      @professeurkeitagaye3118 11 หลายเดือนก่อน

      C'est bien expliqué mais il fallait préciser l'ensemble dans lequel on travaille dans la question.

    • @---wb5tt
      @---wb5tt 11 หลายเดือนก่อน

      Да, за 5 секунд, если вы до этого решали схожие примеры....

    • @swerwolf
      @swerwolf 11 หลายเดือนก่อน

      @@mnnkaz0 никак... Они все топят за "метод подбора", который на самом деле "метод пальца в небо". "Я угадал, потому что подошло" не равнозначно "я решил".

  • @Synthe_log10
    @Synthe_log10 3 หลายเดือนก่อน +1

    many hate comments here. I wanna appreciate that you explain it and i solved it very well.

  • @Stan_144
    @Stan_144 ปีที่แล้ว +254

    You made silly error with the sign of 2 to the power of 3 (line 6 of the solution). Then you made another error in line 7. This is ridiculous ...

    • @yitzchakgrinboim1989
      @yitzchakgrinboim1989 ปีที่แล้ว +32

      Plus the question is extremely simple for an Olympiad

    • @juanjuan-mi4gi
      @juanjuan-mi4gi ปีที่แล้ว +5

      Revise su video antes de mostrarlo....

    • @khigia984
      @khigia984 ปีที่แล้ว +25

      Good catch, but his 2 wrongs turned out to be right

    • @AhmedsNjie-hg5du
      @AhmedsNjie-hg5du ปีที่แล้ว +6

      Bro there's nothing wrong in those steps.. Every step is just awesome

    • @yitzchakgrinboim1989
      @yitzchakgrinboim1989 ปีที่แล้ว +14

      @@AhmedsNjie-hg5du dude, it's an easy question, 4+8 us an intuitive solution so you immediately know that one root is -2, then you divide by (x+2) and you solve a quadratic. I don't know why the weird steps..

  • @franakpan
    @franakpan 10 หลายเดือนก่อน +2

    I love it. Brilliant ❤

  • @88kgs
    @88kgs ปีที่แล้ว +4

    With due respect Sir,
    Just by seeing the equation we can find the answer.. or hit and trial method can also be used..
    Of course we will not be able to find complex answers mentally, but they are as it is rejected for the solution unless asked for in the exam.
    Thank you for sharing this video.
    Regards 🙏🙏

    • @daakudaddy5453
      @daakudaddy5453 ปีที่แล้ว +1

      You must be Indian.
      Trial and error method is not real Mathematics.
      But you guys don't study or care about real Mathematics, nor appreciate it's beauty. To you, finding the answer faster than the other guy in an exam by any means possible is Maths. Higher score is victory. It is not methodical or exhaustive, it's just trick play. Like the difference between a cheap thrill seasonal action film and a timeless classic.

    • @88kgs
      @88kgs ปีที่แล้ว +1

      ​@@daakudaddy5453
      Do something for your frustration, I wish you peace

    • @rrinfinity4912
      @rrinfinity4912 ปีที่แล้ว +1

      ​@@daakudaddy5453The method discussed in the video is also nit methodical, in the sense that it would only work for this cases.
      I guess the most reliable is the cubic formula here or numerical methods, everything else is tricks play.
      What's the point on insulting every student here when most of them are not even responsible for it? Besides, your criticism of students not being exposed to the beauty of math isn't only common in india but everywhere.

  • @meltembuz7206
    @meltembuz7206 11 หลายเดือนก่อน

    Very beatiful explained and correctly solved problem. Because of the third degree term,there must be at least three roots for the equation. İf you draw the diagram of this equation in the analytical plane you will see the roots. I personally was not aware of the equation for root calculation and now learned it. Thank you very much for this informative video

    • @meltembuz7206
      @meltembuz7206 11 หลายเดือนก่อน

      Plus wolfram alfa gives the exact same roots for the equation, for ones information,who does not belive the solution.

  • @setyo9998
    @setyo9998 ปีที่แล้ว +6

    2乗の数から3乗数を引いてプラスになる数はマイナスの数であると解る。-1では12ににならない。-2で即+4と-8とで12と解る。

  • @rororiri6390
    @rororiri6390 9 หลายเดือนก่อน

    These type of problems in exams, usually have a simple solution that by simple looking can be obtained (for example (-2) is obviously a solution of the problem). Then you can divide the equation by x+2 and easily solve the obtained second order equation for other two roots.

  • @blue_white1759
    @blue_white1759 ปีที่แล้ว +5

    My solution take only 30 second 😂. I feel very intelligent 😂😂😂 thank you for primary school level olimpic questions 😅😅

    • @gospelvibes374
      @gospelvibes374 10 หลายเดือนก่อน

      😂😂😂

    • @chrissyday67
      @chrissyday67 8 หลายเดือนก่อน +1

      Is fthis really for Primary school level? I hope so as I was quite concerned at the fall in scholastic standards

    • @blue_white1759
      @blue_white1759 8 หลายเดือนก่อน

      @@chrissyday67 this question is easy to answer but you are right. Unfortunately, Every year student standarts are falling down more...

  • @richardketchem
    @richardketchem 11 หลายเดือนก่อน

    Preferably subtract 12 from both sides ( addition property of equality).

  • @MrKirkMax
    @MrKirkMax ปีที่แล้ว +2

    Согласен с @gorbachevaol. Имплементация алгоритма Горнера, подчеркнула бы структурную инвариантность, обеспечивает внедрение дифференциальных операторов в рамках алгебраического контекста. Так получаемые корни уравнения имеют больший математический смысл, по моему

  • @5herwood
    @5herwood 10 หลายเดือนก่อน

    I didn't catch the mental process by which you derived the 4 and 8 in step 3. I can see it in my own way but 12 is easy to manipulate. How would you perform that step if the constant was 47 instead of 12?
    I'm asking rhetorically. The point is, I think there is a flaw in your explanation of step 3.

  • @user-GlavEng
    @user-GlavEng ปีที่แล้ว +3

    3:42 я не понял, как он превратил х^3-2^3 в х^3+2^3

    • @bobbadner7975
      @bobbadner7975 ปีที่แล้ว

      он ошибся и исправился в следующей строчке.

  • @PARGALATSOS1
    @PARGALATSOS1 ปีที่แล้ว +1

    You can simple use Horner for the value x=-2.

  • @Lifefoodkr
    @Lifefoodkr ปีที่แล้ว +4

    X^2-X^3=12 X^2(1-X)=4×3
    X는 음수가 되어야 함으로
    X=-2 이렇게 간단한 문제를
    너무 어렵게 푸네요.

    • @letsbe4129
      @letsbe4129 2 หลายเดือนก่อน

      나랑 푼 방식이 같네. 이렇게 하면 간단하게 암산되는데 ㅋ

  • @xgx899
    @xgx899 7 หลายเดือนก่อน +1

    Once you guess that $x=-2$ is a root, set x^3-x^2-+12=(x+2)(x^2+ax+6) and determine that a=-3 from the fact that there is no linear term. Then apply quadratic equation formula. Why does this need so many words and equations?

  • @nonsencephilosophy
    @nonsencephilosophy ปีที่แล้ว +8

    this guy did 15 min video just to proof that x equals -2 when everyone guessed it in half a minute
    true legend.

    • @nelsoneason5822
      @nelsoneason5822 ปีที่แล้ว +1

      他是在教思考的““方式””
      所以得用簡單的數字帶您思考
      如果今天的常數從原本的12改成64160000或是更多大的數字那就很難30秒解答出來

    • @nonsencephilosophy
      @nonsencephilosophy ปีที่แล้ว

      @@nelsoneason5822 fair point. knowledge of the algorithm is always the most powerful weapon

    • @nelsoneason5822
      @nelsoneason5822 ปีที่แล้ว +1

      @@nonsencephilosophy wow
      you are a nice guy+9999999

  • @DengDut-iu6dt
    @DengDut-iu6dt 6 หลายเดือนก่อน +1

    I like this topic!

  • @johnsablan9649
    @johnsablan9649 ปีที่แล้ว

    Where can I find a math tutorial with American English accent for my son on YT?

  • @mvqcompany9316
    @mvqcompany9316 ปีที่แล้ว +11

    You made mistake. When you facror out -1, you should have -(x*3+2*2) not (x*3-2*2)

    • @ignatiuswinarto5968
      @ignatiuswinarto5968 ปีที่แล้ว

      No need to use a long pocedure to solve that the value of x is -2. Just use simple arithmatic to get the correct answer

    • @666DomSathanas666
      @666DomSathanas666 ปีที่แล้ว

      I was looking for a comment like yours, I couldn't be the only one who saw this error.

    • @fendibasrifendi4229
      @fendibasrifendi4229 9 หลายเดือนก่อน

      Yup there was an error on factorisation.

  • @luciaagor5311
    @luciaagor5311 ปีที่แล้ว +1

    FANTASTIC😍😍😍😍😍😍😍😍😍😍

  • @SuleimanIbrahim-vc4se
    @SuleimanIbrahim-vc4se 8 หลายเดือนก่อน

    I like you explanation,it is fantastic

  • @유해갑
    @유해갑 ปีที่แล้ว +1

    Thank you. Sir.

  • @GeraldogBH
    @GeraldogBH ปีที่แล้ว

    Me explica como interpretar e entender a leitura lendo tão rápido? Ler por ler acho meio estranho . 1 minuto por página da pra você ler 1 livro de 300 páginas por semana, se o ano tel 50 semanas da pra ler os tais 50 livros . Porque tanta pressa ?

  • @demletesfa5574
    @demletesfa5574 5 หลายเดือนก่อน +1

    Let's solve the equation X2−X3=12X^2 - X^3 = 12X2−X3=12.
    Rearrange the equation to standard polynomial form:
    −X3+X2−12=0-X^3 + X^2 - 12 = 0−X3+X2−12=0
    Multiply through by −1-1−1 to simplify:
    X3−X2+12=0X^3 - X^2 + 12 = 0X3−X2+12=0
    This is a cubic equation, and we need to find the roots. Let's try to find the roots using the Rational Root Theorem, which suggests that any rational solution, in the form of pq\frac{p}{q}qp, is a factor of the constant term divided by a factor of the leading coefficient.
    Here, the constant term is 12 and the leading coefficient is 1, so the possible rational roots are the factors of 12:
    ±1,±2,±3,±4,±6,±12\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12±1,±2,±3,±4,±6,±12
    We can test these possible roots by substitution to see if they satisfy the equation.
    Testing X=1X = 1X=1:
    13−12+12=1−1+12=12≠01^3 - 1^2 + 12 = 1 - 1 + 12 = 12
    eq 013−12+12=1−1+12=12=0
    Testing X=−1X = -1X=−1:
    (−1)3−(−1)2+12=−1−1+12=10≠0(-1)^3 - (-1)^2 + 12 = -1 - 1 + 12 = 10
    eq 0(−1)3−(−1)2+12=−1−1+12=10=0
    Testing X=2X = 2X=2:
    23−22+12=8−4+12=16≠02^3 - 2^2 + 12 = 8 - 4 + 12 = 16
    eq 023−22+12=8−4+12=16=0
    Testing X=−2X = -2X=−2:
    (−2)3−(−2)2+12=−8−4+12=0(-2)^3 - (-2)^2 + 12 = -8 - 4 + 12 = 0(−2)3−(−2)2+12=−8−4+12=0
    So, X=−2X = -2X=−2 is a root.
    Now, we can factor (X+2)(X + 2)(X+2) out of the cubic polynomial:
    X3−X2+12=(X+2)(X2+aX+b)X^3 - X^2 + 12 = (X + 2)(X^2 + aX + b)X3−X2+12=(X+2)(X2+aX+b)
    To find aaa and bbb, we can perform polynomial division or use synthetic division. After factoring, we get:
    (X+2)(X2−3X+6)=0(X + 2)(X^2 - 3X + 6) = 0(X+2)(X2−3X+6)=0
    Now we solve the quadratic equation X2−3X+6=0X^2 - 3X + 6 = 0X2−3X+6=0 using the quadratic formula:
    X=−b±b2−4ac2aX = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}X=2a−b±b2−4ac
    Here, a=1a = 1a=1, b=−3b = -3b=−3, and c=6c = 6c=6:
    X=3±(−3)2−4⋅1⋅62⋅1X = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot 6}}{2 \cdot 1}X=2⋅13±(−3)2−4⋅1⋅6 X=3±9−242X = \frac{3 \pm \sqrt{9 - 24}}{2}X=23±9−24 X=3±−152X = \frac{3 \pm \sqrt{-15}}{2}X=23±−15 X=3±i152X = \frac{3 \pm i\sqrt{15}}{2}X=23±i15
    So, the solutions are:
    X=−2,X=3+i152,X=3−i152X = -2, \quad X = \frac{3 + i\sqrt{15}}{2}, \quad X = \frac{3 - i\sqrt{15}}{2}X=−2,X=23+i15,X=23−i15
    4o

  • @johnlee6304
    @johnlee6304 11 หลายเดือนก่อน +2

    Trial and error method much faster than any methods in this case since you can tell x is a small negative number intuitively. So plug in x = -1,-2,-3. Therefore, x = (-2) is the solution

    • @robertkerr2241
      @robertkerr2241 11 หลายเดือนก่อน +1

      Thats what I did too. Figured it out in about 20 seconds. LOL

    • @onlineMathsTV
      @onlineMathsTV  11 หลายเดือนก่อน +1

      Bravo!!!

    • @onlineMathsTV
      @onlineMathsTV  11 หลายเดือนก่อน +1

      You guys are good at what you do and I love you both for that.
      Respect sir. 💪💪💪👍👍

  • @bamahammer3660
    @bamahammer3660 10 หลายเดือนก่อน +2

    You prolonged the problem. You could have factored the problem out earlier without going through all those additional steps. But I understand you were trying to show the entire process of thought. Good job.

  • @lathifahazzahra8141
    @lathifahazzahra8141 ปีที่แล้ว +1

    Use the Horner method

  • @danielfranca1939
    @danielfranca1939 ปีที่แล้ว +2

    This awesome, u just open my understanding to solving this using this unique method. Thanks for this video sir.

  • @КатяРыбакова-ш2д
    @КатяРыбакова-ш2д 3 หลายเดือนก่อน

    x=-2; (3-V15*i)/2; (3+V15*i)/2. Найдём корень -2 по схеме Горнера и придём к уравнению x^2 + 4x +12 =0.

  • @sudhangshubhattacharya4991
    @sudhangshubhattacharya4991 7 หลายเดือนก่อน

    It should be had a such a. constant vallue as12,,which is in the form of -2*2 +-2*3=+12

  • @shasanyaolabode9377
    @shasanyaolabode9377 หลายเดือนก่อน +1

    interesting wow it is correct

  • @magdiragheb8087
    @magdiragheb8087 5 หลายเดือนก่อน

    x^2-x^3=13
    x^3-x^2+12=0
    factors of 12:±2 , ±3 , ±1
    -2 satisfy the equation -> x+2 factor
    (x+2)(x^2-3x+6)=0
    x=-2 , (3/2)±sqrt(15)i/2

  • @pursueweazmarecoverall486
    @pursueweazmarecoverall486 4 หลายเดือนก่อน

    This is brilliant. However, at 3:16, when we introduce the second bracket. the sign should have changed to +. We did not need to wait until the next step..

    • @onlineMathsTV
      @onlineMathsTV  4 หลายเดือนก่อน

      Noted sir. Thanks for the observation sir.

  • @sj_777
    @sj_777 ปีที่แล้ว

    x^n+y^n=z^n(n>=3)
    Fermat's last theorem please!

  • @KaiUga-ni3hk
    @KaiUga-ni3hk ปีที่แล้ว

    Some comments suggests, that x=-2 could be found within 10 seconds. And indeed, x=-2 is an obvious answer. But how to prove, that it is the only answer?
    We all know, that "x^2=4" has not only one answer.
    He broke the equation down to two:
    x+2=0 --> first solution
    3x-6=x^2 --> potential alternative solution(s)
    Therefore the remaining question had been, if the second equation can be solved. Or not. And he listed correctly both complex conjugates --- even x2 and x3 are awkward.
    Well done.

    • @onlineMathsTV
      @onlineMathsTV  ปีที่แล้ว

      @KaiUga-ni3hk you just pointed out a very salient point which I found difficult trying to make everyone to understand as far this math challenge is concerned.
      On behalf of OnlinemathsTV, I really want to say a very big thank you for your deep understanding of what actually prompt Onlinemaths TV to apply this approach that is being questioned by almost everyone here with a better understanding of things.
      You are good at what you do, maximum respect from everyone here for .
      Above all, we love you dearly and deeply sir....❤️❤️💖💖💕💕😍😍😍

  • @svtha1988
    @svtha1988 3 หลายเดือนก่อน

    What's the point of applying quadratic formula here 😮

  • @syamakhakimelahi3370
    @syamakhakimelahi3370 5 หลายเดือนก่อน

    A simple syntax error.... row number 6 below "solution" .... within the second brackets should be +2 instead of -2.

  • @sarakamali1053
    @sarakamali1053 ปีที่แล้ว +1

    X^2(1-x)=4*3 so x^ 2= 4and 1-x=3 so x=-2 by substituting x=-2 the result will come out

  • @Sayra_07
    @Sayra_07 11 หลายเดือนก่อน

    Just cut ³ to ² using kuadratik.... that ez ,so that will be x²-x+12= 0 or just use calcul and you will get the answer

  • @grzegorzkondracki4630
    @grzegorzkondracki4630 4 หลายเดือนก่อน

    12 = 8 + 4 = 2^3 + 2^2
    -x^3 + x^2 = 2^3 + 2^2
    (-x)^3 + (-x)^2 = 2^3 + 2^2
    -x = 2 => x = -2 - first solution
    Further it's a simple quadratic equation, i.e. mathematical craftsmanship...

  • @benadethayunus3797
    @benadethayunus3797 4 หลายเดือนก่อน

    Thanks,👌👍👍👏👏💥💥

  • @guitarbap
    @guitarbap 11 หลายเดือนก่อน

    I think this way :
    1. X must be negative, because if X positive, X^2 < X^3 => X^2 - X^3 never equals 12.
    2. Negative but range ? X should be from 0 to -3 (I only consider integer), because -X^3 must < 12 itself to carry X^2.
    3. Make a try with integer and easily find X = -2. Base on this to form the other equation to find another 2 X.

  • @estheresthers5050
    @estheresthers5050 10 หลายเดือนก่อน

    What can we use this to develop our economy?
    I mean, what is the practical economic benefit of this complicated maths?
    What does the answer solve in our society?

  • @vandemaataram2600
    @vandemaataram2600 8 หลายเดือนก่อน

    At 3:06, the second sign in the second bracket is wrong. It should be plus sign.

  • @vansf3433
    @vansf3433 ปีที่แล้ว

    You can use this example also posted on here by another individual to see how absurd the notion that negative X negative= positive is :
    x^2+ x^3 =12, x = 2 , which is correct
    And your eq is:
    x^2 -;x^3 = also 12
    So, x^2 -:x^3 = x^2 +:x^3 ----> x^3 = -x^3, which is completely absurd

  • @iev911
    @iev911 ปีที่แล้ว

    I simply gav that formula in the FNgraph shell as was example program in UUP and saw result.

  • @GMetry
    @GMetry ปีที่แล้ว

    X^2 - X^3 = 12
    X^2(1-x) = 2^2*(1-(-2)) , or X^2(1-x) =(-2)^2*(1-(-2))
    If we compare left and right sides of equations, It is obvious, that
    true version of equation is X^2(1-x) = (-2)^2*(1-(-2))
    That is x = -2

  • @BrittyBrat7
    @BrittyBrat7 9 หลายเดือนก่อน

    That was very nice.

  • @francofiori926
    @francofiori926 2 หลายเดือนก่อน

    To solve the equation (x^3 - x^2 = 12), we can rearrange it into standard polynomial form:
    [
    x^3 - x^2 - 12 = 0
    ]
    Now we can use the Rational Root Theorem to test for possible rational roots. The potential rational roots are the factors of (-12), which are (\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12).
    Let's test these values one by one.
    Testing (x = 3):
    [
    3^3 - 3^2 - 12 = 27 - 9 - 12 = 6 \quad (\text{not a root})
    ]
    Testing (x = 2):
    [
    2^3 - 2^2 - 12 = 8 - 4 - 12 = -8 \quad (\text{not a root})
    ]
    Testing (x = 4):
    [
    4^3 - 4^2 - 12 = 64 - 16 - 12 = 36 \quad (\text{not a root})
    ]
    Testing (x = -2):
    [
    (-2)^3 - (-2)^2 - 12 = -8 - 4 - 12 = -24 \quad (\text{not a root})
    ]
    Testing (x = -3):
    [
    (-3)^3 - (-3)^2 - 12 = -27 - 9 - 12 = -48 \quad (\text{not a root})
    ]
    Testing (x = -1):
    [
    (-1)^3 - (-1)^2 - 12 = -1 - 1 - 12 = -14 \quad (\text{not a root})
    ]
    Testing (x = 1):
    [
    1^3 - 1^2 - 12 = 1 - 1 - 12 = -12 \quad (\text{not a root})
    ]
    At this point, we haven’t found any rational roots. Next, we can use numerical or graphical methods or apply the Newton-Raphson method for root-finding if needed.
    Alternatively, if you have access to a graphing calculator or graphing software, you could graph the function:
    [
    f(x) = x^3 - x^2 - 12
    ]
    and look for where the graph intersects the x-axis to find the approximate roots

  • @Divinesview-h7o
    @Divinesview-h7o 8 หลายเดือนก่อน

    Thanks very much sir

    • @onlineMathsTV
      @onlineMathsTV  7 หลายเดือนก่อน

      Smiles....a million thanks to you my dear good friend and brother.
      Thanks for being there for us.
      Much love 💕💕❤️💖

  • @knutholt3486
    @knutholt3486 10 หลายเดือนก่อน

    This equation is better solved with some basic logic rather that with that long formalistic procedure. First of all the left side of the equation must be the same as the sum of two positive numbers to be equal to the right side, which mena that x must be negative. Furthermore, x cannot be very great. Then it is an obvious choise to just test -2 as a first try, which is the solution. If however the right side was a number like 3,936, then you must try a more formalistic approach.

  • @user-gr5tx6rd4h
    @user-gr5tx6rd4h 9 หลายเดือนก่อน

    I solved this in 5 seconds thus: 4 + 8 = 12, 4 - (-8) = 12, x = -2.
    (If only real roots are wanted, long division shows there are no other)

  • @kee1zhang769
    @kee1zhang769 10 หลายเดือนก่อน

    Let P(x)= x^3-x^2+12. One can easily verify that x=-2 is a solution of the equation, so (x+2) is a factor of p(x). Use long division we see that p(x)=(x+2)(x^2-3x+6) ....

  • @amalbanerjee8317
    @amalbanerjee8317 4 หลายเดือนก่อน

    Hallo, how it is done
    as - ( x3 - 23,) = - ( x3 + 23 )??????