2nd method to evaluate the indefinite integral using must know basic techniques

แชร์
ฝัง
  • เผยแพร่เมื่อ 24 ธ.ค. 2024

ความคิดเห็น • 2

  • @user-lu6yg3vk9z
    @user-lu6yg3vk9z 2 วันที่ผ่านมา

    Another method
    sin^2(x)/(sin^4(x)-1)
    sin^4(x)/(sin^2(x)(sin^4(x)-1))
    (sin^4(x)-1+1)/(sin^2(x)(sin^4(x)-1))
    (sin^4(x)-1)/(sin^2(x)(sin^4(x)-1)) +1/(sin^2(x)(sin^4(x)-1))
    1/sin^2(x)+1/(sin^2(x)(sin^2(x)+1)(sin^2-1))
    csc^2(x)-1/(sin^2(x)(sin^2(x)+1)(1-sin^2(x))
    csc^2(x)-1/(sin^2(x)(sin^2(x)+1)cos^2(x))
    csc^2(x)-sec^2(x)/(sin^2(x)(sin^2(x)+1))
    csc^2(x)-sec^4(x)sec^2(x)/(tan^2(x)(tan^2(x)+sec^2(x))
    csc^2(x)-(tan^2(x)+1)^2sec^2(x)/(tan^2(x)(2tan^2(x)+1))
    Let u=tan(x)
    du=sec^2(x) dx
    csc^2(x)-(u^2+1)^2/(u^2(2u^2+1))
    csc^2(x)-(u^4+2u^2+1)/(u^2(2u^2+1))
    csc^2(x)-u^4/(u^2(2u^2+1)+(2u^2+1)/(u^2(2u^2+1))
    csc^2(x)-u^2/(2u^2+1)+1/u^2
    csc^2(x)-1/2 integral 2u^2+1-1/(2u^2+1)+1/u^2
    csc^2(x)-1/2integral 1-1/(2u^2+1)+1/u^2

    • @cipherunity
      @cipherunity  2 วันที่ผ่านมา

      It is done. You may watch the video for your second solution for this integral