Evaluating the definite integral using must know basic techniques

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 ม.ค. 2025
  • Mis-2671
    Integrate 1/(5 - 3 sin x)^2 dx from 0 to 2π
    #calculus #definite_integrals #substitution #evenfunction #oddfunction #wallis #cipher

ความคิดเห็น • 5

  • @user-lu6yg3vk9z
    @user-lu6yg3vk9z 17 วันที่ผ่านมา

    check out
    Define the integral as I
    convert sin(x)=cos(pi/2-x)
    Apply kings property
    cos(pi/2-(2pi-x))=cos(-3pi/2+x)
    cos(x-3pi/2)
    Use the sum/difference
    Add two forms of I
    Play around using algebra

  • @holyshit922
    @holyshit922 17 วันที่ผ่านมา

    Split interval of integration into quadrants
    Integral on first quadrant leave as it is
    In integral on second quadrant use substitution t = \pi-x
    In integral on third quadrant use substitution t = x - pi
    In integral on fourth quadrant use substitution t = 2\pi - x
    Add these integrals to get integral
    4\int_{0}^{\pi}{\frac{25+9sin^2(x)}{(25-9sin^2(x))^2}dx}
    Use substitution t = tan(x) to get
    4\int_{0}^{\infty}{\frac{25+34t^2}{(25+16t^2)^2}}dt}
    Now we can rewrite it as
    4(\int_{0}^{\infty}{\frac{25+16t^2}{(25+16t^2)^2}}dt} + 18\int_{0}^{\infty}{\frac{t^2}{(25+16t^2)^2}dt})
    Then integrate \int_{0}^{\infty}{\frac{t^2}{(25+16t^2)^2}dt} by parts

    • @cipherunity
      @cipherunity  17 วันที่ผ่านมา

      It is done

  • @slavinojunepri7648
    @slavinojunepri7648 19 วันที่ผ่านมา

    Another potential solution:
    Consider I(t)=integral 0 to 2π of 1/(t-3sinx).
    Calculate I(t) using standard techniques or Weierstrass substitution.
    Integrate the result of I(t) twice to get I''(t).
    Replace t by 5 in the result of I"(t) for the final answer.
    Raghvendra Singh proposed about these exact steps to solve the integral with cos(x) in the integrand instead of sin(x). This approach is worth perhaps monkeying here.

    • @cipherunity
      @cipherunity  19 วันที่ผ่านมา

      I shall check it out. There are many comments in the que.