Finding the BIGGEST rectangle under y=x^3 (but NO calculus!)

แชร์
ฝัง
  • เผยแพร่เมื่อ 31 ม.ค. 2025

ความคิดเห็น • 179

  • @blackpenredpen
    @blackpenredpen  หลายเดือนก่อน +37

    If x+2y=4, then find the max of sqrt(x)+sqrt(y): th-cam.com/video/YSJzpQQSOZw/w-d-xo.html

    • @shyamaldas6209
      @shyamaldas6209 หลายเดือนก่อน

      God job bro

    • @anonymouscheesepie3768
      @anonymouscheesepie3768 หลายเดือนก่อน +1

      x + 2y = 4
      2y = 4 - x
      y = 2 - .5x
      let A = sqrt(x) + sqrt(y)
      A = sqrt(x) + sqrt(2 - .5x)
      A' = 1/[2sqrt(x)]- 1/[4sqrt(2 - .5x)]
      let A' = 0
      1/[2sqrt(x)] = 1/[4sqrt(2-.5x)]
      2sqrt(x) = 4sqrt(2 - .5x)
      4x = 16(2 - .5x)
      x = 8 - 2x
      3x = 8
      x = 8/3
      when x = 8/3 a maximum occurs
      We need to check endpoints as well:
      C1: x = 0
      A = sqrt(0) + sqrt(2)
      A = sqrt(2) ~= 1.414
      C2: x = 8/3
      A = sqrt(8/3) + sqrt(2 - 4/3)
      A = 2sqrt(2/3) + sqrt(2/3)
      A = 3sqrt(2/3) = sqrt(6) ~= 2.45
      C3: y = 0, i.e. x = 4
      A = sqrt(4) + sqrt(2 - 2)
      A = 2
      So the maximum of sqrt(x) + sqrt(y) occurs when x = 8/3 and is equal to sqrt(6).

    • @wonghonkongjames4495
      @wonghonkongjames4495 หลายเดือนก่อน

      2.25*2.25*2.25*.75=8. ... ?

    • @seshan6857
      @seshan6857 หลายเดือนก่อน

      Sir please make a video on use of and , or in mathematics .means its meaning like in set theory or means union and and meaning intersection.in probability different so please make a video on that.

  • @I-._.-l
    @I-._.-l หลายเดือนก่อน +255

    I think he's good at Math guys

    • @forcelifeforce
      @forcelifeforce หลายเดือนก่อน +10

      That is not a sentence. For one thing, you are addressing "guys." Try the next sentence. I think he's good at math, guys.

    • @generalkenobi9803
      @generalkenobi9803 หลายเดือนก่อน +58

      @@forcelifeforce Sadly, nobody cares.

    • @patricksarama4963
      @patricksarama4963 หลายเดือนก่อน +4

      Nah I disagree

    • @blackholegamer9
      @blackholegamer9 หลายเดือนก่อน +26

      @@forcelifeforce top 10 'we dont give a fuck' moments

    • @roulam3001
      @roulam3001 หลายเดือนก่อน

      ​@@generalkenobi9803 I alongside many people do care, you don't know how infuriating it is to recognise improper grammar and sentence structure.

  • @pwmiles56
    @pwmiles56 หลายเดือนก่อน +51

    Very clever! I did it a different way, bit long-winded but it worked.
    A = x^3 (3 - x)
    -A = x^4 - 3x^3
    Suppose the quartic on the right touches a line y = -b at x = a. (x-a) will be a repeated factor. Write
    x^4 - 3x^3 + b = (x - a)^2 (x^2 + cx + d) [edited, see below]
    = (x^2 - 2ax + a^2)(x^2 + cx + d)
    = x^4
    + (-2a + c) x^3
    + (d - 2ac + a^2) x^2
    + (-2ad + a^2c) x
    + a^2 d
    Equating x^3 coefficients
    c - 2a = -3
    c = 2a - 3
    Equating x coeffs
    a^2c - 2ad = 0
    ac = 2d
    d = ac/2
    d = a(2a - 3)/2
    Substitute back in x^2 coeff
    a(2a-3)/2 - 2a(2a-3) + a^2 = 0
    (2a-3)/2 - 2(2a-3) + a = 0
    a - 3/2 - 4a + 6 + a = 0
    2a = 9/2
    a = 9/4, the solution for x
    Equating constant coeffs
    b = area = a^2 a(2a-3)/2
    = (729/64)(3/2)/2 = 2187 / 256

    • @silversailor7077
      @silversailor7077 หลายเดือนก่อน +5

      Nice spacing

    • @islam2681
      @islam2681 หลายเดือนก่อน +3

      @@pwmiles56 I like your method, although I believe you forgot to shift the function by -b before equating it, since when you equated the area function and the factored form on the right, the equality doesn't hold as can be seen by substituting x = a. Feel free to correct me if I am wrong, good work nonetheless!

    • @pwmiles56
      @pwmiles56 หลายเดือนก่อน +1

      @islam2681 You are quite right. The equation should read
      x^4 - 3x^3 + b = (x - a)^2 (x^2 + cx + d)
      (b will be A, of course, but I am leaving it free for now)
      Thanks!

    • @matthewfeig5624
      @matthewfeig5624 หลายเดือนก่อน +1

      Great work

  • @remigeron4844
    @remigeron4844 หลายเดือนก่อน +33

    Nice video, and thank you for being careful with the details (e.g., you verified the variables used in the application of AM-GM were non-negative, you made sure the upper bound was actually a maximum, and you made sure that in the claimed equality case, the x was in the required interval).

  • @peterbrockway5990
    @peterbrockway5990 หลายเดือนก่อน +18

    The academic year has just ended in NZ and highschool students and their parents are up in arms about an optimisation problem involving the min surface area for a cylinder of given volume when the students had not been taught how to differentiate f(r)=1/r. But the answer is arguably the most famous cylinder shape in the history of Mathematics, and like so many of these problems, no calculus is required.

    • @ffc1a28c7
      @ffc1a28c7 หลายเดือนก่อน +1

      How the hell do you not teach students the most basic derivative of x^n??? we literally learned that in the first week we were first introduced to the derivative (wow, it works for integers. wow it works for rationals because chain rule. wow, it works for real numbers because density of rationals and since if qn converges to r, on any bounded interval, x^qn converges to x^r uniformly and hence d/dx x^qn converges to d/dx x^r. Then just expand the interval to include an arbitrary point and you're done). Also, you can *easily* do 1.x directly from first principles.

  • @cdkw2
    @cdkw2 หลายเดือนก่อน +77

    Nice method but I'd still use calculus though!

    • @Rev03FFL
      @Rev03FFL หลายเดือนก่อน

      Yea, I don't recall being taught this AM-GM method. I'll have to look it up. But I do remember my basic calculus, so derivative for the win!

    • @cdkw2
      @cdkw2 หลายเดือนก่อน

      @@Rev03FFL its op!

  • @andrec.2935
    @andrec.2935 หลายเดือนก่อน +8

    Na minha opinião, um dos melhores da Internet: objetivo, claro e resolve problemas valorosos! Obrigado, companheiro!

  • @ronbannon
    @ronbannon หลายเดือนก่อน +23

    Thank you. I must admit, doing the calculus is way easier! In any case, the AM-GM is perhaps a better testing one's resilience in thinking forward.

    • @perrob
      @perrob หลายเดือนก่อน +1

      where does am gm come from? never heard of it😢

    • @adityajha2889
      @adityajha2889 หลายเดือนก่อน

      Solve enough number of problems and u will find out the importance of am gm

  • @nocturnalvisionmusic
    @nocturnalvisionmusic หลายเดือนก่อน +4

    Calculus master is back with more awesome stuff 🙌🤗

  • @abcdwxyz6608
    @abcdwxyz6608 หลายเดือนก่อน

    i don't know if you guys will believe me or not, but i thought about am gm just by seeing the thumbnail ( that may be becuz I've done questions like that before ) and definitely it's a very clean way to avoid calculus, thanks for spreading such solutions

  • @graf_paper
    @graf_paper หลายเดือนก่อน

    Oh man that is a satisfying method. Bravo.

  • @kenhaley4
    @kenhaley4 หลายเดือนก่อน +3

    So much easier to use calculus. A = x³(3-x) = -x⁴ + 3x³. Differentiating we get A' = -4x³ + 9x². Setting that = 0, we have 4x³ = 9x², or 4x = 9. So, x = 9/4.
    The area would then be (3 - 9/4)(9/4)³. That comes to 2187 / 256, the same answer BPRP got.

    • @Ninja20704
      @Ninja20704 หลายเดือนก่อน +3

      well the point here is to explore and learn other possible ways to solve the problem instead of just looking for the easiest way. We never know if there may be a similar problem where using calculus may be much harder than this method, such as optimisation problems with 3 or more variables

    • @kenhaley4
      @kenhaley4 หลายเดือนก่อน +3

      @@Ninja20704 I know, I was just making a point. So often people think calculus is hard, and avoiding it makes it easier. This is a good counter-example.

  • @aranarus
    @aranarus หลายเดือนก่อน +1

    Задача очень простая.
    S=(3-x)x^3
    Находим производную площади.
    S’=9x^2-4x^3
    Находим экстремум.
    x=9/4
    Проверяем знак производной справа и слева от точки.
    При данном значение Х площадь имеет наибольшее значение.

    • @omar.ma7
      @omar.ma7 หลายเดือนก่อน

      Vravo..I did the same ..

    • @dalex641
      @dalex641 หลายเดือนก่อน

      Прочти условие внимательнее. Производные использовать нельзя.

  • @gregorymagery8637
    @gregorymagery8637 หลายเดือนก่อน +10

    Amax using derivative
    A = (3-x)*y
    = (3-x)*x^3
    = 3x^3 - x^4
    dA/dx = 9x^2 - 4x^3 = 0
    x^2*(9 - 4x) = 0
    => x = 0 (-> Amin=0)
    x = 9/4 (-> Amax)
    Amax = (3 - 9/4)*(9/4)^3 = 2187/256

  • @mathemagician26
    @mathemagician26 หลายเดือนก่อน

    More generally, the largest rectangle bounded by the x-axis, y=x^3, and the vertical line x=a has area (27/256)a^4 and meets the curve at x=(3/4)a

  • @mathemagician26
    @mathemagician26 หลายเดือนก่อน

    “Without calculus” proceeds to use a result from Real Analysis without justification 😂

    • @imabotatrobloxskyblock6355
      @imabotatrobloxskyblock6355 หลายเดือนก่อน

      wdym. everything made sense to me. all very basic stuff and I'm a sophomore in high school

    • @dansf2
      @dansf2 หลายเดือนก่อน

      I agree. You can't appeal to AM GM and then say you didn't use calculus. Proving GM is always less than AM requires a certain amount of calc and/or real analysis.

  • @skilz8098
    @skilz8098 หลายเดือนก่อน

    Beautifully done, what a piece of artistic work.

  • @شعرکوتاه-ع7ظ
    @شعرکوتاه-ع7ظ หลายเดือนก่อน +1

    Thank so much 🎉

  • @lucsas9277
    @lucsas9277 หลายเดือนก่อน

    i started trembling and sweating at the no calc statement

  • @HeManGNichtDualismus
    @HeManGNichtDualismus หลายเดือนก่อน +12

    why would am gm come in your head in the first place????????

    • @gdtargetvn2418
      @gdtargetvn2418 หลายเดือนก่อน +6

      You want the maximum to be a constant, so there should be an idea of cancelling all x terms, and converting from product to sum through AM-GM is a logical way.

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 หลายเดือนก่อน +5

      The AM-GM inequality is very often useful for solving maximization problems - because it is an inequality and hence tells you how big something can get maximally.

    • @blackpenredpen
      @blackpenredpen  หลายเดือนก่อน +12

      Because my viewers told me about this 😆

  • @Saasbutter
    @Saasbutter หลายเดือนก่อน +1

    How elegant!

  • @paytonholmes6019
    @paytonholmes6019 หลายเดือนก่อน +1

    How is the geometric mean the maximum? Please explain.

  • @rainerzufall42
    @rainerzufall42 หลายเดือนก่อน +1

    Isn't it a bit easier to use (9 - 3x) instead of thrice x/3? => AM = ((9 - 3x) + x + x + x) = 9 / 4.
    LHS = (9 - 3x) x³ / RHS = (9/4)^4 => (3 - x) x³ = 1/3 (3^8/2^8) = 3^7/2^8 = 2187 / 256.

    • @Bof-q6l
      @Bof-q6l หลายเดือนก่อน

      Same thing

    • @Bof-q6l
      @Bof-q6l หลายเดือนก่อน +1

      You just multiplied all by 3

    • @rainerzufall42
      @rainerzufall42 หลายเดือนก่อน +1

      @Bof-q6l Yes, I let the x being x and changed -x to -3x (also 3 to 9) with the benefit of not having fractions, just natural numbers! "Easier", at least for me. With the same result of 9/4.

  • @rainerzufall42
    @rainerzufall42 หลายเดือนก่อน +2

    The argumentation why you can just arbitrarily cut 3 in 3 thirds is beyond me. Maybe I'm missing something.
    I see why it works, as you got the same weight on (3 - x) and x³ as the two sides of the rectangle.
    But what if you have (3 - 2x) ? Then you have 2/3 x each. Similar result: 9/8.
    LHS = (3 - 2x) (2/3 x)³ = 8/27 (3 - 2x) x³ / RHS = 27/8 (3/4)^4 = 3^7 / 2^11
    Scaling it to the original area formula: (3 - 2x) x³

    • @civilizationkills3138
      @civilizationkills3138 หลายเดือนก่อน +1

      The AM GM inequality still holds and it simplifies to an expression that matches the desired expression, and he verified that the resulting constant is a possible value of the expression.

    • @rainerzufall42
      @rainerzufall42 หลายเดือนก่อน +2

      @@civilizationkills3138 I wanted to edit the former post, as I get it now. This method seeked a solution for the 4 dimensional cube with sizes (3 - x), x/3, x/3, x/3, and all these values are 3/4.

  • @colbyforfun8028
    @colbyforfun8028 หลายเดือนก่อน

    Is there a general way of knowing when a problem of this type is solvable using this method? Could you do this for any (positive) polynomial on any interval?

  • @antonyqueen6512
    @antonyqueen6512 หลายเดือนก่อน

    Sorry that is too complicated, requires knowledge of the AM-GM and the very smart trick of replacing the x by x/3, which is based on hindsight that the AMGM rule can be used.
    The simple and straightforward solution is using the derivative to find maximum and minimum values.
    dA(x)/dx =A‘(x)= 9x^2 - 4x^3
    => A‘(x)= x^2*(9-4x)
    1) solving for A‘(x)=0 to find maximum/minimum of A:
    A‘(x)= 0 => x=0 or x=9/4
    2) check whether these values correspond to minimum or maximum:
    For x=0 => A(0)=0 : obviously a minimum
    For x=9/4:
    The term x^2 of A’(x) is always positive.
    The term (9-4x) of A’(x) changes sign from positive to negative by passage by x=9/4
    => A(x) is
    increasing for 0 ≤ x ≤ 9/4, and
    decreasing for 9/4 ≤ x ≤ 3
    => 9/4 defines a maximum of A(x), and
    Max[A(x)] = A(9/4)=2187/256

  • @rcbruce
    @rcbruce หลายเดือนก่อน

    what if you can rotate the rectangle? (keeping 0 < x = 0)

  • @Anmol_Sinha
    @Anmol_Sinha หลายเดือนก่อน +1

    I did (3-x)x³ = (3x-x²)(x²)
    Both must be equal so,
    3x-x²=x²
    x=1.5
    What did I do wrong?

    • @fridolfwalter2256
      @fridolfwalter2256 หลายเดือนก่อน

      Can you explain your thought process further?

    • @Anmol_Sinha
      @Anmol_Sinha หลายเดือนก่อน

      @fridolfwalter2256 I thought as (3x-x²)(x²) is the same as the initial one, the max of this will give the answer
      The max value happens when both terms are equal(as he said in video)
      x =0 is neglected as that is the minimum
      Which gives x =1.5
      x is between 0 and 3 and thus is also an achievable value giving area 81/16 which is incorrect

    • @cyberduck027
      @cyberduck027 หลายเดือนก่อน

      I think in this case the max of (3x - x^2)(x^2) isn't necessarily when 3x - x^2 = x^2 because of the presence of the x^2. It is true that for the product of two linear factors like x(3-x) the maximum is when x = 3-x but this doesn't necessarily hold for more complicated expressions.

    • @Anmol_Sinha
      @Anmol_Sinha หลายเดือนก่อน

      @cyberduck027 I got it. Its because the sum must be a constant. In your example 3-x+x=3 and that's why the equality holds. Same for bprp's expression.
      Thank you! I wouldn't have been able to realize it without your comment

  • @lawrencejelsma8118
    @lawrencejelsma8118 หลายเดือนก่อน +4

    Check the Calculus way!? xxx(3-x) = 3x^3 - x^4 ,
    d/dx that function = 0 for maximu or minima. 9X^2 - 4x^3 = 0 and doing second derivative test of that to say maxma or minima 18x - 12x^2 or 18 - 12x being positive at 9x^2 - 4x^3 or at 9 - 4x point or x = 9/4 point.
    If you know Calculas don't be afraid to use it to quickly find x= 9/4 location and a maxima at that point from Calculus 2nd derivative.
    Yes, general harder way mathematics without Calculus is neat but Calculus knoledge is faster and neater.

  • @cristianvita2433
    @cristianvita2433 หลายเดือนก่อน

    Hello sir, please show how to solve the following integral:
    integral from x to y of sin(xt)/cos(yt) dt
    I have tried substitution method and integration by parts and neither worked. Thank you! And keep up the good work :)

  • @jamescollier3
    @jamescollier3 หลายเดือนก่อน +5

    can someone explain why you can just divide by 3 on a, b, c? I've wouldn't think that preserves the equation or inequality?😮 Thanks

    • @jamescollier3
      @jamescollier3 หลายเดือนก่อน

      oops: b, c, d

    • @LordQuixote
      @LordQuixote หลายเดือนก่อน +5

      He wasn't trying to preserve the inequality. He was trying to pick values for b, c and d to make the problem easier to solve. He could have easily chosen b=1, c=2 and d=3 and the inequality would still hold--it just wouldn't help solve the problem, though.

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 หลายเดือนก่อน +4

      The inequality holds for any a, b, c, d. It holds for a = 3-x, b = x, c = x, d = x, but it also holds for a = 3-x, b = x/3, c = x/3, d = x/3. You only have to insert the same values on _both_ sides of the inequality.

    • @edsznyter1437
      @edsznyter1437 หลายเดือนก่อน +4

      Instead of finding the maximum area of the rectangle, he's finding the maximum of 1/27th of the area of the rectangle. Happens at the same place.

    • @pk2712
      @pk2712 หลายเดือนก่อน

      He is solving for the particular value of x where (3-x)=x/3 because then 3-x +x/3+x/3+x/3=the constant 3 .

  • @michaeldeoz
    @michaeldeoz หลายเดือนก่อน +1

    How to check is this is a maximum area?

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 หลายเดือนก่อน +1

      Huh?! The video showed that this is the maximum area, there is no need to check this again.
      But if you insist, one could use calculus.

  • @avz1865
    @avz1865 หลายเดือนก่อน

    Very clever!

  • @magefreak9356
    @magefreak9356 หลายเดือนก่อน

    Learned something new 😊❤

  • @4gnostic
    @4gnostic หลายเดือนก่อน

    splendid ❤

  • @Noconstitutionfordemocrats1
    @Noconstitutionfordemocrats1 หลายเดือนก่อน

    I got as far as an inequality was going to be the approach.

  • @pauljackson3491
    @pauljackson3491 หลายเดือนก่อน

    At the end you had (x-3) = x/3 because a=b=c=d.
    You didn't even need to go through the 4th root((x-3)x^3/27 part.
    And also, why is the "=" true when a=b=c=d?

    • @memealert3023
      @memealert3023 หลายเดือนก่อน

      because the quartic root of a^4 is the same as 4a/4

  • @keypey8256
    @keypey8256 หลายเดือนก่อน +2

    8:33 shouldnt it be x=3-x instead of 3-x=x/3 ??? it's a=b=c=d and a=3-x, b=x, c=x, d=x

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 หลายเดือนก่อน +3

      No, it's a = 3-x, b = x/3, c = x/3, d = x/3, starting from 6:15 and going on from there. Using a=3-x, b=x, c=x, d=x does not help in solving this problem, as he explains in the video.

  • @vnms-
    @vnms- หลายเดือนก่อน +7

    Please solve: Form a tangent line to the curve x^3 at point “a” such that the area under the line from its x intercept to “a” is 1.5 areaunits

    • @coctost
      @coctost หลายเดือนก่อน +1

      Taking f(x)=x³ we have f'(x)=3x² and thus f(a)=3a².
      Now can calculate the tangent line at the point a which is y=3a²x-2a³, and we see that this line intercepts the x axis at the point x=⅔a.
      Now we can finally calculate the area of the triangle under the line (a-⅔a)a³/2 since the base is the segment that goes from ⅔a to a and the height is a³.
      In the end we say that the area is a⁴/6 which is equal to 1.5 or 3/2 when a=9^(1/4).
      You could have also used the integral from ⅔a to a of 3a²x-3a³ with respect of x and then forcing the result of the integral to be equal to 3/2

  • @bain8renn
    @bain8renn หลายเดือนก่อน

    thats awesome

  • @alexchan4226
    @alexchan4226 หลายเดือนก่อน

    yes

  • @jmwild1
    @jmwild1 หลายเดือนก่อน

    I was thinking that inequality wasn't quite right. The area can't be 0 so x cannot be 0 or 3, so the restriction on x is 0 < x < 3. The answer at the end was still correct, though, so maybe that didn't matter in this instance.

    • @LordQuixote
      @LordQuixote หลายเดือนก่อน +2

      3*0^3=0 or 0*3^3=0: the two extreme areas (basically a horizontal line or a vertical line)

    • @jmwild1
      @jmwild1 หลายเดือนก่อน +1

      @@LordQuixote Yes and we don't want to include those extrema, so we restrict our domain for x to the open interval (0, 3) instead of a closed interval [0, 3].

    • @LordQuixote
      @LordQuixote หลายเดือนก่อน +2

      @@jmwild1 Why? It's an unnecessary restriction.

    • @jmwild1
      @jmwild1 หลายเดือนก่อน +1

      @@LordQuixote The problem specifies a rectangle fit under a curve. At x = 0 and x = 3, we don't have a rectangle. So it's an important restriction to have.

    • @LordQuixote
      @LordQuixote หลายเดือนก่อน +2

      @@jmwild1 Yeah, no, not really. In a general problem, if the best answer is zero, you'll lose that if you restrict the domain and get an incorrect answer. (For example, what's the most optimal area to not lose money? Ans: 0)

  • @Skyler827
    @Skyler827 หลายเดือนก่อน +10

    I get that this is a stipulation for the problem, but I don't understand when or why you would solve a problem like this and not be willing or able to use calculus.

    • @jamescollier3
      @jamescollier3 หลายเดือนก่อน +15

      to learn different things

    • @donmoore7785
      @donmoore7785 หลายเดือนก่อน +14

      It's obvious when or why. It is to demonstrate how such a problem can be solved using a different method - one that many would never have thought of, and/or may not be aware of.

    • @Peter_1986
      @Peter_1986 หลายเดือนก่อน +7

      @@donmoore7785 My first university math book "Calculus: A Complete Course" had a section very early in the book where it showed how the area of a circle could be derived by thinking of it as adding together lots of isosceles triangles, and then taking the limit of the number of triangles. That method was very insightful.

    • @forcelifeforce
      @forcelifeforce หลายเดือนก่อน

      @ jamescollier3
      @ donmoore7785
      @ Peter_1986 -- None of you got the point of Skyler827 that why would it occur to a solver to use this method *without it being brought up.*

    • @lawrencejelsma8118
      @lawrencejelsma8118 หลายเดือนก่อน

      Don't learn Calculus and abandon it! Mechanical or Dimensions Architects professional people don't go back to basic mathematics to solve their Physics problems. Otherwise not using Calculus in the Canon Ball trajectory problems with initial velocities just became difficult of Calculus never existed.

  • @HenriLaporte-kv6qq
    @HenriLaporte-kv6qq หลายเดือนก่อน

    Very nice

  • @taneemalam1135
    @taneemalam1135 หลายเดือนก่อน

    7:30 you don't need to be modest. 😰

  • @scottleung9587
    @scottleung9587 หลายเดือนก่อน

    Nice!

  • @shyamaldas6209
    @shyamaldas6209 หลายเดือนก่อน +1

    Good 👍

  • @JARG-Random_Guy
    @JARG-Random_Guy หลายเดือนก่อน

    (3,0),(3,27),(infinity,27),(infinity,0) lol😂

  • @Musterkartoffel
    @Musterkartoffel หลายเดือนก่อน +6

    Could you do a video on the differentiation of f(x) =|x|? I can't find an explanation for why it's x /|x|. (it makes sense but I'd like to know how you get there)

    • @Ninja20704
      @Ninja20704 หลายเดือนก่อน +1

      He does have it in some of his videos but I’m not sure which ones.
      But the simplest way is rewrite |x| as sqrt(x^2) then differentiate the usual way, then replace the sqrt(x^2) back with |x| in the final answer. So
      d/dx[|x|]
      =d/dx[sqrt(x^2)]
      =1/[2sqrt(x^2)] * 2x
      =x/sqrt(x^2)
      =x/|x|

    • @clementfradin5391
      @clementfradin5391 หลายเดือนก่อน +1

      The definition of absolute value is : |x|=sqrt(x^2)
      If you want to differentiate |x| you can just take the derivative of sqrt(x^2) which is
      x/sqrt(x^2)
      = x/|x|

    • @Musterkartoffel
      @Musterkartoffel หลายเดือนก่อน +1

      OK, thanks guys

    • @CapitanBuffalo
      @CapitanBuffalo หลายเดือนก่อน +1

      |х| = х, if x≥0; -x if x < 0.
      |x|' = x' if x>0, (-x)' if x

    • @CapitanBuffalo
      @CapitanBuffalo หลายเดือนก่อน

      this explanation is more illuminating than the ones above

  • @tombou4188
    @tombou4188 หลายเดือนก่อน

    Without calculus he said

  • @eleceousgaming3566
    @eleceousgaming3566 หลายเดือนก่อน +1

    At 5:32 you divided the equation by 3 but you didn't multiply by 3 on either side to make the equality holds

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 หลายเดือนก่อน

      Huh? No, he did not divide the equation by 3 at 5:32, what are you talking about? And there is no equality at 5:32, only an inequality. Are we talking about the same video???

    • @jmwild1
      @jmwild1 หลายเดือนก่อน

      He was just trying to figure out what to choose for a, b, c, and d. He was looking for a way to remove the x from the right side by choosing values for b, c, and d that would eliminate the -x from the (3 - x) he had for a. Because he chose those for b, c, and d, he then had to do that to both sides of his inequality. This way, he had a constant value on one side and then was able to proceed until he got his original equation on one side

  • @bahaagamer9500
    @bahaagamer9500 หลายเดือนก่อน +4

    using calculus is so much easier though.

    • @lawrencejelsma8118
      @lawrencejelsma8118 หลายเดือนก่อน

      It's always dumb to know the Calculus way and not use it. Especially in Physics or Mechanical Engineering or Drafting professional jobs.

    • @Ninja20704
      @Ninja20704 หลายเดือนก่อน +3

      @@lawrencejelsma8118well the point here is to explore and learn other possible ways to solve the problem instead of just looking for the easiest way. We never know if there may be a similar problem where using calculus may be much harder than this method, such as optimisation problems with 3 or more variables

  • @chrislloyd5415
    @chrislloyd5415 หลายเดือนก่อน

    How do you prove AM>GM. I suspect it might be .... calculus!

    • @blackpenredpen
      @blackpenredpen  หลายเดือนก่อน

      No, just algebra or geometry
      en.m.wikipedia.org/wiki/AM-GM_inequality

  • @mikeys2986
    @mikeys2986 หลายเดือนก่อน

    I didn't understand that at all! And I have a Math A.A. ...I don't remember how to do it by calculus either. Embarassing!

  • @mustangjoe2071
    @mustangjoe2071 หลายเดือนก่อน +1

    Black magic

  • @sunnyyeung3733
    @sunnyyeung3733 หลายเดือนก่อน

    One of the conclusion in this video, calculus can save your time. Pls spend some time to learn it.

  • @ayanmondal1953
    @ayanmondal1953 หลายเดือนก่อน

    Newton saved humankind.

  • @ahkaissi
    @ahkaissi หลายเดือนก่อน

    Doing it the calculus way shows that the maximum area (where the derivative = 0) occurs at x=3/4 (0.75) and not at x=9/4. I guess that the substitution should be reversed at the very end by dividing by 3.

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 หลายเดือนก่อน +1

      "Doing it the calculus way shows that the maximum area (where the derivative = 0) occurs at x=3/4 (0.75) and not at x=9/4."
      Actually, doing it the calculus way also gives x = 9/4. I don't know how you got x = 3/4. Could you please show your calculations?
      "I guess that the substitution should be reversed at the very end by dividing by 3."
      No, that makes no sense, why should one do that? Which "substitution" are you even talking about?

  • @justkarl2922
    @justkarl2922 หลายเดือนก่อน

    ahow is AM-GM proven? :DD

  • @larryp5359
    @larryp5359 หลายเดือนก่อน +4

    Can you prove AM-GM without calculus? I'd like to see how.

    • @blackpenredpen
      @blackpenredpen  หลายเดือนก่อน

      Yes, using algebra. I did that in this video (for the two variables case) th-cam.com/video/dCQeGIrkMWQ/w-d-xo.htmlsi=YnJTmzXxO0QMf4rO

  • @vaggelissmyrniotis2194
    @vaggelissmyrniotis2194 หลายเดือนก่อน

    I cheated and used calculus unfortunately!

  • @raghvendrasingh1289
    @raghvendrasingh1289 หลายเดือนก่อน +2

    👍
    short method
    we have to divide 3 in ratio 1:3
    a - x = 3/4
    x = 9/4
    area = (3/4)(729/64)
    = 2187/256

    • @FaranAiki
      @FaranAiki หลายเดือนก่อน +4

      yea... prove it (or derive: where did the ratio 1 : 3 even come from)

    • @raghvendrasingh1289
      @raghvendrasingh1289 หลายเดือนก่อน

      @FaranAiki consider four positive quantities
      (3 - x)/1 , x/3 , x/3 , x/3
      with sum = 3
      when we apply AM - GM inequality on these quantities we get the result.
      in AM - GM inequality equality holds iff all quantities are equal hence
      (3 - x)/1 = x/3 in other words ratio between (3 - x) and x is 1:3
      and since their sum is 3 we can say that we have to divide 3 in the ratio 1:3
      other examples -
      (1) find the maximum value of (x^3){ (20 - x)^2 } if 0 < x < 20
      we have to divide 20 in the ratio 3 :2
      x = 12 , 20 - x = 8
      maximum value is (12^3)(8^2) = 110592
      (2) find the maximum value of (x^2)(y^3) if 3 x+2 y = 1 , x > 0 , y > 0
      we have to divide 1 in the ratio 2 : 3
      3 x = 2/5 , 2 y = 3/5 or
      x = 2/(3)(5) , y = 3/(2)(5)
      maximum value is 3/6250
      (3) find the maximum value of xy if x+y = 8 , x > 0 , y > 0
      we have to divide 8 in the ratio 1:1
      x = 4 , y = 4
      maximum value is 16

    • @maxhagenauer24
      @maxhagenauer24 หลายเดือนก่อน +4

      ​@raghvendrasingh1289 Ok so not a shorter way...

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 หลายเดือนก่อน

      @@raghvendrasingh1289 Since all of that long explanation is necessary for solving the problem, your way was not shorter at all.

  • @ymj5161
    @ymj5161 หลายเดือนก่อน

    像我们国内中考题

  • @SNOWgivemetheid
    @SNOWgivemetheid หลายเดือนก่อน +1

    ealry gang

  • @ivanyeung4577
    @ivanyeung4577 หลายเดือนก่อน

    太正了

  • @riteshpatkari3277
    @riteshpatkari3277 หลายเดือนก่อน

    First