Can you find Area and Perimeter of the triangle? | (Angles) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024

ความคิดเห็น • 50

  • @mohanramachandran4550
    @mohanramachandran4550 วันที่ผ่านมา +2

    𝗩𝗲𝗿𝘆 𝗶𝗻𝘁𝗲𝗿𝗲𝘀𝘁𝗶𝗻𝗴 𝘀𝘂𝗺

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l 22 ชั่วโมงที่ผ่านมา +1

    waooo very helpful vedio thanks for sharing ❤❤❤

  • @cheechierocks
    @cheechierocks วันที่ผ่านมา +4

    For those complaining about graphics. Graphics are and should never be drawn to scale. Trust your math and not your eyes.

    • @ronaldkussman2539
      @ronaldkussman2539 วันที่ผ่านมา

      True dat. But this was egregiously misleading.

  • @unknownidentity2846
    @unknownidentity2846 วันที่ผ่านมา +4

    Let's face this challenge:
    .
    ..
    ...
    ....
    .....
    From the interior angle sum of the triangle ABC we can conclude:
    180° = ∠BAC + ∠ABC + ∠ACB = 2x + 3x + x = 6x ⇒ x = 180°/6 = 30°
    ⇒ ∠BAC = 2x = 60°
    ∧ ∠ABC = 3x = 90°
    ∧ ∠ACB = x = 30°
    Therefore ABC is a 30°-60°-90° triangle and we obtain:
    AB = AC/2 = 32/2 = 16
    BC = AB*√3 = 16√3
    Now we are able to calculate the area A and the perimeter P of the triangle:
    A = (1/2)*AB*BC = (1/2)*16*16√3 = 128√3
    P = AB + AC + BC = 16 + 16√3 + 32 = 48 + 16√3
    Best regards from Germany

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 วันที่ผ่านมา +2

    In ABC we have 6.x = 180°, so x = 30°. Now AB/sin(30°) = BC/sin(60°) = AC/sin(90°) = 32, so AB = 16 and BC = 16.sqrt(3) and the perimeter is
    16..(3 + sqrt(3)). The area is (1/2).AB.BC as the triangle is a right triangle, so the area is (1/2).(16).(16.sqrt(3) = 128.sqrt(3)). (No difficulty.)

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 วันที่ผ่านมา +2

    S=128√3≈221,696≈221,7
    P=48+16√3=16(3+√3)≈75,712≈75,71

    • @PreMath
      @PreMath  วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq วันที่ผ่านมา +1

    Extend CB to D and angle ABD =2x +x =3x
    Now we see AB is on CBD and two adjacent angles ABD and ABC are 3x
    Hence AB is perpendicular to BC.
    Hence angle ABC=3x =90 degrees
    Now angle ACB =x =3x/3=90/3=30 degrees
    Angle BAC =2x =30*2=60 degrees .
    ABC is a 30-60-90 triangle
    Side opposite to 90 is 32
    Hence side opposite to 30 is 32/2=16
    side opposite to 60 is 16√3
    Area =1/2*16*16√3
    =128√3 sq units
    Perimeter =32+16+16√3
    =48+16√3=16(3+√3) units

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @MrPoornakumar
    @MrPoornakumar 20 ชั่วโมงที่ผ่านมา

    Total angle (sum of angles) in a triangle =180 degrees.
    P = Perimeter = AB+BH+AH.
    Here, it is x+2x+3x = 6x.
    Hence x = (180/6) degrees = 30 degrees.
    Name the vertices at angles x as A, that at 2x as B & that at 3x as H (sides designated AB, BH & AH).
    The angles are x = 30 degrees, 2x = 60 degrees, 3x = 90 degrees and the "side 32" lies between x & 2x facing 3x = 90 degrees.
    Its a right-angled triangle.
    And hypotenuse = AB = 32.
    Construction: The triangle is flipped over at H (angle 3x = 90 deg.), around A (angle x) & joined to the original triangle. Call the flipped vertex as C. Then in the composite triangle, at vertex A, the angles get added to 90+90 degrees = 2(3x) = 180 degrees.
    Hence the continuation is a straight line BH+HC = 2 BH
    The new triangle is an equilateral triangle with angles each 2x = 60 degrees. Hence it has equal sides
    AC = 2BH = AB = 32.
    BH = 32/2 = 16 = CH.
    In the Pythagoras (right-angled) triangle ABH,
    hypotenuse^2 = altitude^2+base^2
    hypotenuse^2 - altitude^2 = base^2; AH is the base
    AH^2 = AB^2 - BH^2 = 32^2 - (32/2)^2 = (16 x 2)^ - 16^2 = 16^2(2^2 - 1) = 16^2(3)
    AH = √[(16^2)3] = 16√3.
    P = AB+BH+AH = 32+16+16√3 = 16(3+√3).
    Area of (the first) triangle, ABH = ½[altitude x base] = ½[BH x AH] = ½[16 x 16√3] = ½.16^2[√3] = 128√3

  • @pas6295
    @pas6295 วันที่ผ่านมา

    It is very simple. First name the corner where you have the angle 2x as point A. Then the point in which you have the angle x as B. And the third one which has 3x as Point C. From A draw a perpendicular to meet BC at a point extended byCB as D. Let us assume AC as P. And BC as Q. In the triangle ABC the sides are proportional to their opposite angle. So AB which is in length 32/3x=P/x=Q/2x.
    The sum of three angles is 6 •x=180.So the angle 3•x=90 being a Rt Angle. Now two Rt.angled triangles are there only two unknown involving P one side and another Q. So you can solve easily for Pand Q. Once you know Pand Q and the other side given as 32 you get perimeter and half of it semi perimeter. Use the Area of a triangle using the three sides formula. √s(s-a) ( s-b)(s-c) /2. You get the area and Perimeter.

  • @alster724
    @alster724 วันที่ผ่านมา +1

    Easy.
    After figuring out it was a 30-60-90 rt∆, I solved this myself and skipped to the end to double check if my answers match and they did.

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for the feedback ❤️

  • @jamestalbott4499
    @jamestalbott4499 วันที่ผ่านมา +1

    Thank you!

    • @PreMath
      @PreMath  วันที่ผ่านมา

      You are very welcome!
      Thanks ❤️

  • @MrPaulc222
    @MrPaulc222 วันที่ผ่านมา +1

    x = 30deg so it's a 30,60,90 drawn totally out of scale (well, you did warn us!).
    32 is the hypotenuse as it's opposite the 90deg.
    Therefore, the two shorter sides are 16 and 16*sqrt(3)
    Perimeter is 48 + 16*sqrt(3) which approximate to 75.71
    Area is 8*16*sqrt(3) = 128*sqrt(3) which approximates to 221.7 un^2.
    The key to this is figuring out the angles first: i.e. 6x = 180deg

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for the feedback ❤️

  • @alexundre8745
    @alexundre8745 วันที่ผ่านมา +1

    Bom dia Mestre
    Obrigado pela aula

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Hello dear😀
      You are very welcome!
      Thanks for the feedback ❤️

  • @globlecenter9235
    @globlecenter9235 18 ชั่วโมงที่ผ่านมา +1

    Area 245.76
    Perimeter 76.8

  • @misterenter-iz7rz
    @misterenter-iz7rz วันที่ผ่านมา +1

    Unexpectedly simple😮.

    • @vaggelissmyrniotis2194
      @vaggelissmyrniotis2194 วันที่ผ่านมา

      I started to do complicated thoughts on this and then read your comment and figured out immediately that 2x+3x+x=180.The rest was easy.Thanks!!

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Glad to hear that!
      Thanks for the feedback ❤️

  • @gaylespencer6188
    @gaylespencer6188 วันที่ผ่านมา +1

    Peculiarly drawn 90' triangle.

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Thanks for the feedback ❤️

  • @cyruschang1904
    @cyruschang1904 วันที่ผ่านมา

    x + 2x + 3x = 180°
    It is a 30° - 60° - 90° triangle
    The three sides are 16 - 16√3 - 32
    Perimeter = 48 + 16√3

  • @wackojacko3962
    @wackojacko3962 วันที่ผ่านมา +1

    1969 I was 20 klicks up the Mekong and had to secure the perimeter . So similarly as @ 2:16 , I was stared at like whoose in charge here? 😊

    • @PreMath
      @PreMath  วันที่ผ่านมา +1

      😀
      Thanks for the feedback ❤️

  • @gelbkehlchen
    @gelbkehlchen วันที่ผ่านมา

    Solution:
    x+2x+3x = 6x = 180° |/6 ⟹
    x = 30° ⟹ the triangle is the famous 30°-60°-90° triangle. This means that AB = 32/2 = 16 and BC = √(32²-16²) = √786 = √(16*16*3) = 16*√3.
    Perimeter = 32+16+16*√3 = 16*2+16+16*√3 = 16*(3+√3) ≈ 75.7128
    Area = AB*BC/2 = 16*16*√3/2 = 128*√3 ≈ 221.7025

  • @Birol731
    @Birol731 วันที่ผ่านมา +1

    My way of solution ▶
    For the given triangle ΔABC, the angles are:
    ∠CAB= 2x
    ∠ABC= 3x
    ∠BCA= x

    2x+3x+x= 180°
    x= 30°

    ∠CAB= 60°
    ∠ABC= 90°
    ∠BCA= 30°
    ΔABC is a right triangle.
    sin(30°)= [AB]/[CA]
    [CA]= 32

    1/2= [AB]/32
    [AB]= 16
    cos(30°)= [BC]/[CA]
    [CA]= 32

    √3/2= [BC]/32
    [BC]= 16√3
    P(ΔABC)= [AB]+ [BC] + [CA]
    P(ΔABC)= 16+ 16√3 + 32
    P(ΔABC)= 48+ 16√3
    P(ΔABC)= 16(3+√3)
    P(ΔABC)≈ 75,713 length units
    A(ΔABC)= [AB]*[BC]/2
    A(ΔABC)= 16*16√3/2
    A(ΔABC)= 128√3
    A(ΔABC)≈ 221,70 square units

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @gnanadesikansenthilnathan6750
    @gnanadesikansenthilnathan6750 16 ชั่วโมงที่ผ่านมา

    Got it using trigonometric principles.

  • @ManojkantSamal
    @ManojkantSamal 16 ชั่วโมงที่ผ่านมา

    Area =128.*3(*= read as square root )
    Perimeter =16(3+*3).......May be

  • @wasimahmad-t6c
    @wasimahmad-t6c วันที่ผ่านมา

    180÷6=30×2=60÷30=2×2=4+1×1=5squroth=2.236+3=5.236)(32÷2.236×5.236=74.9338

  • @globlecenter9235
    @globlecenter9235 18 ชั่วโมงที่ผ่านมา

    Area 245.76
    Perimeter. 76.8

  • @sergioaiex3966
    @sergioaiex3966 23 ชั่วโมงที่ผ่านมา

    Solution:
    The sum of the interior angles of a triangle is always 180°, therefore:
    x + 2x + 3x = 180°
    6x = 180°
    x = 30°
    Thus, we are dealing with a special triangle 30° - 60° - 90°
    The segment opposite 90° is 32 and it is "2x"
    The segment opposite 30° is "x"
    And the segment opposite 60° is "x√3"
    Therefore 2x = 32
    x = 16
    The sides of the triangle ABC is 32, 16 and 16√3
    Perimeter = 32 + 16 + 16√3
    Perimeter = 48 + 16√3 Units ✅
    Perimeter ≈ 75.7128 Units ✅
    Area = ½ base height
    Area = ½ 16√3 . 16
    Area = 128√3 Square Units ✅
    Area ≈ 221.7025 Square Units ✅

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho วันที่ผ่านมา +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) X + 2X + 3X = 180º ; 6X = 180º ; X = 30º
    02) Triangle (ABC) Angles = (30º ; 60º ; 90º)
    03) sin(30º) = AB / 32 ; AB = 32 * sin(30º) ; AB = 16
    04) sin(60º) = BC / 32 ; BC = 32 * sin(60º) ; BC = (32 * sqrt(3)) / 2 ; BC = 16sqrt(3)
    05) A = (16sqrt(3) * 16) / 2
    06) A = 128sqrt(3) ; A ~ 221,70 sq un
    07) P = 32 + 16 + 16sqrt(3) ; P = 48 + 16sqrt(3) ; P ~ 75,8 lin un
    Therefore,
    Area ~ 221,70 Square Units
    Perimeter ~ 75,8 Linear Units

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @승수노-z3e
    @승수노-z3e 15 ชั่วโมงที่ผ่านมา

    angle 180=nx?

  • @Alishbafamilyvlogs-bm4ip
    @Alishbafamilyvlogs-bm4ip 21 ชั่วโมงที่ผ่านมา +1

    Very beautiful video stay connected Sir ❤❤🎉🎉🎉

  • @adoq
    @adoq วันที่ผ่านมา

    took me 10 seconds

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for the feedback ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 วันที่ผ่านมา +1

    X=30..3x=90???

    • @alster724
      @alster724 วันที่ผ่านมา +1

      Yes. That's why he redrew it as a right triangle.

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for the feedback ❤️

  • @kouroshsalehi9486
    @kouroshsalehi9486 ชั่วโมงที่ผ่านมา

    Sorry, but it's not a good problem at solving at all....