Can you calculate area of the Trapezoid? | (Triangles) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 ธ.ค. 2024

ความคิดเห็น • 67

  • @charlesmitchell5841
    @charlesmitchell5841 19 วันที่ผ่านมา +4

    Nice problem. Haven’t followed you in a while and I miss your lessons. TH-cam Has a way of scattering your interest all over creation! Thanks for the video.

    • @PreMath
      @PreMath  19 วันที่ผ่านมา +2

      I'm glad you liked the video! I’m always trying to keep things interesting, but it’s good to hear from you again.
      Thanks for the feedback ❤️🙏

    • @michaelstahl1515
      @michaelstahl1515 17 วันที่ผ่านมา

      @@PreMath I followed your videos all the time . Sometimes I have no other way to solve a problem. Be sure you`re great !

    • @uwelinzbauer3973
      @uwelinzbauer3973 17 วันที่ผ่านมา

      Yes, sometimes TH-cam also gives recommendations to me for videos with pretty girls showing clothing fashion 😅
      But I always come back to math and geometry, I promise!

  • @nandisaand5287
    @nandisaand5287 19 วันที่ผ่านมา +3

    @ 7:30:
    Assign (X) to segment EF.
    Assign (3-X) to DF.
    X²+H²=2²
    (X-3)²+H²=3²
    Two eqns, 2 varibles. Solve and you find X=⅔.
    Plug back into eqn above, and you find H=4•Sqrt(2)/3

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @cyruschang1904
    @cyruschang1904 18 วันที่ผ่านมา +3

    h = height
    2^2 - a^2 = 3^2 - (3 - a)^2 = h^2
    4 - a^2 - 9 + 9 - 6a + a^2 = 0
    4 - 6a = 0
    a = 2/3
    h = √(32/9) = (4√2)/3
    area = (1 + 4)((4√2)/3)/2 = (10√2)/3

    • @PreMath
      @PreMath  17 วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

    • @cyruschang1904
      @cyruschang1904 17 วันที่ผ่านมา

      @@PreMath Thank YOU

  • @davidellis1929
    @davidellis1929 18 วันที่ผ่านมา +5

    I found a different solution. Dropping perpendiculars from A and B to CD divides CD into three segments with lengths x, 1 and 3-x. Then the required altitude h can be found by applying the Pythagorean Theorem to the two right triangles: h^2=2^2-x^2=3^2-(3-x)^2. The x^2 terms cancel out, leaving a linear equation with solution x=2/3. Then h^2=32/9, so h=sqrt(32/9)=4*sqrt(2)/3, and the area of the trapezoid is (h/2)(4+1), which is 10*sqrt(2)/3. Which approach do readers prefer?

    • @allanflippin2453
      @allanflippin2453 18 วันที่ผ่านมา

      This is the approach I took. I find the math is simpler this way.

    • @seyed_mahdi
      @seyed_mahdi 16 วันที่ผ่านมา

      your approach is better. thanks for sharing

  • @jamestalbott4499
    @jamestalbott4499 18 วันที่ผ่านมา +1

    Thank you!

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      You are very welcome! Thanks for the feedback ❤️

  • @highlyeducatedtrucker
    @highlyeducatedtrucker 18 วันที่ผ่านมา +3

    Once you have the 3,3,2 isosceles triangle, you don't need to find its area. Area of a Trapezoid is (1/2)(a+b)(h). a and b are given, and you can find h from the isosceles triangle as you demonstrated in the video.

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Excellent!
      Thanks for the feedback ❤️

  • @alster724
    @alster724 18 วันที่ผ่านมา

    Tricky at first but easy as it progresses

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 17 วันที่ผ่านมา +1

    Very well
    Thanks Sir
    That’s wonderful method of solve
    Thanks PreMath
    Good luck with respects ❤❤

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      I am so glad you liked it! Thanks for the feedback ❤️🙏

  • @jimlocke9320
    @jimlocke9320 18 วันที่ผ่านมา +2

    The area of ΔADF can, alternatively, be found using Heron's formula. The sides a, b, c are 2, 3, and 3. The semi perimeter, s, is (a + b + c)/2 = (2 + 3 + 3)/2 = 4. Area = √(s(s - a)(s - b)(s - c)) = √((4)(2)(1)(1) = √8 = 2√2. There is also Bretschneider′s formula for quadrilaterals, which would find the area directly from the lengths of the 4 sides and cos(Θ/2), where Θ is the sum of either 2 opposite angles. We have the lengths of all 4 sides. However, it is probably more straightforward to use PreMath's approach instead finding cos(Θ/2).

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 19 วันที่ผ่านมา +2

    S=10√2/3≈4,717≈4,72

    • @PreMath
      @PreMath  17 วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

  • @ellenmortensen1987
    @ellenmortensen1987 19 วันที่ผ่านมา +1

    Im so gratefull for your channel. Learning to put in to formula has been great. Done all of your tutorials.
    But now im looking for some tutorials being a bit more difficult. Can you provide.

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Keep watching..
      Thanks for the feedback ❤️

  • @adept7474
    @adept7474 18 วันที่ผ่านมา

    S(ADF) =(3/4)S(ADC) = 2√2
    S(ADC) = (4/3)S(ADF).
    S(ABCD) = (5/3)S(ADF) = (10√2)/3.

  • @sorourhashemi3249
    @sorourhashemi3249 18 วันที่ผ่านมา +1

    Thanks challenging. Connect B to CD as perpendicular and mark it as M . so ∆BMC and mark MD as a. MC=4-a. ===>BM^2=4-(4-a) and connect A to CD as well. So BM^2= 9- (a-1)===>a=10/3 and MB ( height)= 1.888, area

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      You are very welcome!
      Thanks for the feedback ❤️

  • @michaelstahl1515
    @michaelstahl1515 18 วันที่ผ่านมา +1

    Great solution again , Sire . I didn`t expect that way. I propose to draw a vertical line from A to CD and from point B to CD. I call it point F . The distance between E and F ist 1 LU.
    The distance between F and C may be x units. The distance DE is 4 - 1 - x = 3 - x . When I use the theorem of Pythagoras on the triangles ADE and BFC so I got for x = 2/3.
    So h = 4 * Square ( 2 ) / 3 and the area is 10 * square ( 2) / 3.

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @wasimahmad-t6c
    @wasimahmad-t6c 12 วันที่ผ่านมา

    3×3-1÷1=8squrooth=2.8284+1.94=4.7674

  • @wasimahmad-t6c
    @wasimahmad-t6c 18 วันที่ผ่านมา

    2.8284+1.9703=4.798769area

  • @scottdort7197
    @scottdort7197 19 วันที่ผ่านมา +1

    Once you divide up the trapezoid into a triangle and a parallelogram, you can sum of those areas separately. The area of the triangle is going to be equal to 2*sqrt2.
    The area of the parallelogram is going to be 1*2*cosx. Cosx = 2*sqrt2/3. Therefore, the area of the parallelogram is going to be 4/3*sqrt2.
    If you have these two areas together, the sum is 10/3*sqrt2 just Premath previously stated.

    • @PreMath
      @PreMath  17 วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

  • @johnbrennan3372
    @johnbrennan3372 18 วันที่ผ่านมา +1

    Use Heron’s formula on triangle DFA to get area = 2sqroot2. Area also = 1/2(3). h. So h=(4root2)/3 etc

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @TurquoizeGoldscraper
    @TurquoizeGoldscraper 18 วันที่ผ่านมา +1

    I never thought of breaking it up to make an isosceles triangle like that. I broke it up into the center rectangle and two right triangles and used Pythagoras to figure out the height.

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Thanks for the feedback ❤️

  • @wackojacko3962
    @wackojacko3962 18 วันที่ผ่านมา

    Strange we can think about things that don't exist. ....more to come! 😊

    • @PreMath
      @PreMath  17 วันที่ผ่านมา +1

      😀
      Thanks for the feedback ❤️

  • @quigonkenny
    @quigonkenny 18 วันที่ผ่านมา +1

    Draw EA, in such a way that E is the point on CD where EA is parallel with BC. As AB is already parallel with CE, then ABCE is parallelogram, and CD = AB = 1, EA = BC = 2, and ED = CD-CE = 4-1 = 3. Let ∠EDA = θ.
    In triangle ∆EDA, by the law of cosines:
    cosθ = (ED²+DA²-AE²)/(2ED(DA))
    cosθ = (3²+3²-2²)/(2(3)(3))
    cosθ = (9+9-4)/18
    cosθ = 14/18 = 7/9
    sin²θ + cos²θ = 1
    sin²θ + (7/9)² = 1
    sin²θ + 49/81 = 1
    sin²θ = 1 - 49/81 = 32/81
    sinθ = √(32/81) = (4√2)/9
    Draw AF, where F is the point on ED where AF and ED are perpendicular. Let AF = h.
    sinθ = AF/DA
    (4√2)/9 = h/3
    h = 3(4√2)/9 = (4√2)/3
    Trapezoid ABCD:
    A = h(a+b)/2
    A = ((4√2)/3)(1+4)/2
    A = (2√2)5/3
    [ A = (10√2)/3 ≈ 4.714 sq units ]

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @bakrantz
    @bakrantz 18 วันที่ผ่านมา

    Add line connecting AF. Use Heron's Formula to calculate area of triangle ADF as 2 root 2. Calculate height of trapezoid which is same as height of triangle ADF using the base DF of 3 and the area from Herons as (4 root 2)/3. Calculate area of trapezoid as 1/2h(a+b) which equals 20/6 root 2.

  • @MrPaulc222
    @MrPaulc222 19 วันที่ผ่านมา +1

    I got the same answer with a different method. I extended AB with lines x and y to make a rectangle. I made two equations by Pythagoras and compared them to calculate x, y, and h. I then subtracted the two triangles that I made from the rectangle area. It is a valid method but I felt yours was more compact and a bit cleaner.

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @santiagoarosam430
    @santiagoarosam430 19 วันที่ผ่านมา +1

    Copiamos AB sobre D y obtenemos un triángulo isósceles DBA, cuya altura por A es √(3²-1²)=2√2= Área DBA---> Altura por D =4√2/3---> Área ABCD =[(4+1)/2]*(4√2/3) =10√2/3.
    Gracias y saludos

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Excellent!
      You are very welcome!
      Thanks for sharing ❤️🙏

  • @ChuzzleFriends
    @ChuzzleFriends 18 วันที่ผ่านมา

    Draw a segment thru point A and a point E on base CD such that it is parallel to leg BC.
    This forms a parallelogram ABCE (since segment CE is on base CD, so it is parallel to base AB).
    By the Parallelogram Opposite Sides Theorem, AE = 2 & CE = 1.
    So, DE = CD - CE = 4 - 1 = 3.
    So, △ADE is an isosceles triangle.
    Draw a segment thru point D and the midpoint F of segment AE. This is an altitude of △ADE. It should intersect with segment AE at a right angle.
    So, AF = EF = 1. Apply the Pythagorean Theorem on △AFD.
    a² + b² = c²
    1² + (DF)² = 3²
    (DF)² + 1 = 9
    (DF)² = 8
    DF = √8
    = 2√2
    Find the area of △ADE.
    A = (bh)/2
    = 1/2 * 2 * 2√2
    = 2√2
    Draw another altitude of △ADE. This altitude should intersect point A and a point G on segment DE. It is the height of the trapezoid (and the parallelogram on that statement).
    Use the area formula to find this height AG.
    A = (bh)/2
    2√2 = 1/2 * 3 * AG
    2√2 = 3/2 * AG
    AG = 2√2 * 2/3
    = (4√2)/3
    Find the area of parallelogram ABCE.
    A = bh
    = 1 * (4√2)/3
    = (4√2)/3
    Trapezoid ABCD Area = △ADE Area + Parallelogram ABCE Area
    = 2√2 + (4√2)/3
    = (6√2)/3 + (4√2)/3
    = (10√2)/3
    So, the area of the yellow trapezoid is (10√2)/3 square units (exact), or about 4.71 square units (approximation).

  • @Abdelfattah-hr8tt
    @Abdelfattah-hr8tt 18 วันที่ผ่านมา +2

    Hello 'lm so happy to when of yours follower's I'm from Morocco

    • @PreMath
      @PreMath  18 วันที่ผ่านมา

      Hello dear!
      Glad to hear that!
      Thanks for the feedback ❤️
      Love and prayers from the USA! 😀

  • @bandarusatyanandachary1181
    @bandarusatyanandachary1181 18 วันที่ผ่านมา

    When 3 sides of a triangle are given we can find its area by using simple formula square root of s(s -a)(s - b)(s - c)

  • @alexundre8745
    @alexundre8745 18 วันที่ผ่านมา +1

    Bom dia Mestre
    Fiz um pouco diferente do Sr dividi o Trapézio em 2 triângulos retângulos fiz Pitágoras e igualei as alturas. Daí só foi usar (B+b)xh)/2.
    Obrigado pela aula

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Excellent!
      You are very welcome!
      Thanks for sharing ❤️

  • @sorourhashemi3249
    @sorourhashemi3249 18 วันที่ผ่านมา +1

    And area is 4.714

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @andrepiotrowski5668
    @andrepiotrowski5668 8 วันที่ผ่านมา

    Enlarge the isosceles triangle so that the side length is 4 and use the ray theorem to calculate the areas!
    A = A_4 - A_1 = A_3 * ((4/3)^2 - (1/3)^2) = A_3 * 15/9 = 5/3 * sqrt(8) = 10/3 * sqrt(2)

  • @prossvay8744
    @prossvay8744 19 วันที่ผ่านมา +1

    Area of the trapezoid=1/2(1+4)(4√2/3)=10√2/3 square units.❤❤❤

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 18 วันที่ผ่านมา +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) DC = X + 1 + Y ; X + 1 + Y = 4 ; X + Y = 3
    02) X + Y = 3
    03) h^2 = 9 - X^2
    04) h^2 = 4 - Y^2
    05) 9 - X^2 = 4 - Y^2
    06) System of Two Nonlinear Equations with Two Unknowns :
    a) X + Y = 3
    b) X^2 - Y^2 = 5
    07) Solutions :
    a) X = (7 / 3) lin un
    b) Y = (2 / 3) lin un
    08) Check : (7 / 3) + (2 / 3) = (9 / 3) = 3
    09) h^2 = 9 - (49 / 9) ; h = (81 - 49) / 9 ; h = (32 / 9)
    10) h^2 = 4 - (4 / 9) ; h = (36 - 4) / 9 ; h = (32 / 9)
    11) h = (sqrt(32) / 3) lin un
    12) h = (4*sqrt(2) / 3) lin un
    13) (h / 2) = (2*sqrt(2) / 3)
    14) TA = 5 * (2*sqrt(2) / 3) sq un
    15) TA = [(10*sqrt(2)) / 3] sq un
    16) TA ~ 4,714 sq un
    Therefore,
    OUR BEST ANSWER :
    Trapezoid Area equal [(10*sqrt(2)) / 3] Square Units or approx. equal to 4,714 Square Units.

    • @PreMath
      @PreMath  17 วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 18 วันที่ผ่านมา

    My way of solution ▶
    By the given trapezoid (ABCD)
    E ∈ [AC] and [DE] ⊥ [AE] and
    F ∈ [AC] and [FC] ⊥ [BF]
    [AB]= [EF]= 1
    [DE]= x
    [FC]= 4-1-x
    [FC]= 3-x
    step-I) Let's apply the Pythagorean theorem for the right triangle ΔDEA :
    [DE]² + [EA]²= [AD]²
    [DE]= x
    [EA]= h
    [AD]= 3

    x² + h²= 3²
    x²+h²= 9...........Eq-1)
    step-2) Applying the Pythagorean theorem for the right triangle ΔFCB :
    [BF]²+[FC]²= [CB]²
    [BF]= h
    [FC]= 3-x
    [CB]= 2

    h² + (3-x)²= 2²
    h²+(3-x)²= 4.......Eq-2)
    if we get h² from the equation-1 and put this value in equation-2, we get:
    x²+h²= 9
    h²= 9-x²

    9-x² + (3-x)²= 4
    9-x²+9-6x+x² = 4
    14= 6x
    x= 7/3
    h= √9-x²
    h= √(9 - 49/9)
    h= 4√2/3
    A(ABCD)= (4+1)*h/2
    h= 4√2/3
    A(ABCD)= 5*4√2/6
    A(ABCD)= 10√2/3
    A(ABCD) ≈ 4,714 square units

  • @sergioaiex3966
    @sergioaiex3966 18 วันที่ผ่านมา +1

    Solution:
    Let's label 2 points, one perpendicular to point C, point R, and other perpendicular to point D, point S
    Let's label
    BR = x
    RC = h
    In ∆ BCR, applying Pythagorean Theorem:
    x² + h² = 2²
    x² + h² = 4 ... ¹
    In ∆ ADS, applying Pythagorean Theorem after label AS
    AS = 4 - (1 + x)
    AS = 3 - x
    (3 - x)² + h² = 3²
    9 - 6x + x² + h² = 9
    x² + h² = 6x ... ²
    Replacing ¹ in ²
    4 = 6x
    x = 4/6
    x = 2/3
    Replacing x = 2/3 in equation ¹
    (2/3)² + h² = 4
    4/9 + h² = 4 (×9)
    4 + 9h² = 36
    9h² = 32
    h² = 32/9
    h = 4√2/3
    Trapezoid Area
    A = ½ h (a + b)
    A = ½ 4√2/3 (1 + 4)
    A = 10√2/3 Square Units ✅
    A ≈ 4,7140 Square Units ✅

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 19 วันที่ผ่านมา +4

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Let's add the points E and F on CD such that ABEF is a rectangle. In this case the triangles ADF and BCE are both right triangles and we can apply the Pythagorean theorem. With x=CE and y=AF=BE we obtain:
    AD² = AF² + DF²
    BC² = BE² + CE²
    AD² = AF² + (CD − EF − CE)²
    BC² = BE² + CE²
    AD² = AF² + (CD − AB − CE)²
    BC² = BE² + CE²
    3² = y² + (4 − 1 − x)²
    2² = y² + x²
    9 = y² + (3 − x)²
    4 = y² + x²
    9 − 4 = (3 − x)² − x²
    5 = 9 − 6x + x² − x²
    6x = 4
    ⇒ x = 4/6 = 2/3
    ⇒ y² = 4 − x² = 4 − (2/3)² = 4 − 4/9 = 36/9 − 4/9 = 32/9 ⇒ y = √(32/9) = 4√2/3
    Since y=AF=BE is the height of the trapezoid, we are able to calculate its area:
    A(ABCD) = (1/2)*(AB + CD)*y = (1/2)*(1 + 4)*(4√2/3) = 10√2/3
    Best regards from Germany

    • @thewolfdoctor761
      @thewolfdoctor761 19 วันที่ผ่านมา +2

      I solved it this way, as well.

    • @Aligakore
      @Aligakore 18 วันที่ผ่านมา +1

      Done this way too !

    • @PreMath
      @PreMath  17 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️