Can you find area of the Yellow shaded region? | (Circles) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024
  • Learn how to find the area of the Yellow shaded region. Important Geometry and Algebra skills are also explained: Pythagorean theorem; area of the circle formula; area of the rectangle formula; circle theorem. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you find area of t...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Can you find area of the Yellow shaded region? | (Circles) | #math #maths | #geometry
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindYellowArea #Rectangle #Circles #GeometryMath #PythagoreanTheorem
    #MathOlympiad #InscribedAngleTheorem #RightTriangle #RightTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the length AB
    Pythagorean Theorem
    Right triangles
    Intersecting Chords Theorem
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

ความคิดเห็น • 60

  • @srf2112
    @srf2112 2 วันที่ผ่านมา +2

    Geometry was baffling for me until I reached the "aha!" moment when the logic train pulled into the station. Now I love geometry.

    • @PreMath
      @PreMath  2 วันที่ผ่านมา

      Excellent!
      Glad to hear that!
      Thanks for sharing ❤️
      Stay blessed 😀

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 2 วันที่ผ่านมา +2

    We may get an equilateral 🔺 on joining the centres of the circles and side of the triangle will be 2 units.
    Height of triangle is √3*2/2=√3 units
    The breadth and length of the rectangle will be
    1+1+√3=(2+√3) units
    and 4 units
    Area of rectangle
    =4(2+√3) sq units
    Area of yellow portion
    =[4(2+√3) - 3π] sq units

    • @PreMath
      @PreMath  2 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @sorourhashemi3249
    @sorourhashemi3249 วันที่ผ่านมา

    Thanks. Easy.

  • @marioalb9726
    @marioalb9726 3 วันที่ผ่านมา +2

    A₁ = 3π cm²
    A₂ = b.h = 4R.(2R+2Rcos30°)
    A₂= 14,928 cm²
    A= A₂ - A₁ = 14,928 - 3π = 5,5 cm² ( Solved √ )

    • @PreMath
      @PreMath  3 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @jamestalbott4499
    @jamestalbott4499 2 วันที่ผ่านมา +1

    Thank you!

    • @PreMath
      @PreMath  2 วันที่ผ่านมา

      I'm glad you found it helpful! ❤️
      You are very welcome!
      Thanks for the feedback ❤️

  • @cyruschang1904
    @cyruschang1904 2 วันที่ผ่านมา +1

    r = 1
    rectangle length = 4r
    rectangle width = (2 + √3)r
    area = 4(2 + √3)r^2 - 3π = 4(2 + √3) - 3π

  • @Irishfan
    @Irishfan 2 วันที่ผ่านมา

    This one was so easy that I had the problem figured out in my head in 5 to 10 seconds. This time, I used the sqrt of three rather than figuring the decimal form of that length of a 30-60 right triangle. I prefer the convertion to decimals rather than leaving the answer in terms of square roots or PI

  • @himo3485
    @himo3485 3 วันที่ผ่านมา +1

    r*r*π=π r=1
    √[2^2-1^2]=√3
    Yellow shaded area
    = 4(2+√3) - 3π = 8 + 4√3 - 3π

    • @PreMath
      @PreMath  3 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @michaeldoerr5810
    @michaeldoerr5810 3 วันที่ผ่านมา +5

    This is an example of easier than it looks. I must apologize for missing out on PreMath videos. Looks like it is a matter of mentally justifying what geometric observation can be cited as long as that observation respects the fact that nothing is drawn to scale. That requires either memorization or practice. Also I followed along and I almost got every step correct. The yellow shaded area is 8+4*sqrt(3)-3pi units square.

    • @PreMath
      @PreMath  3 วันที่ผ่านมา

      Excellent!
      Thanks for the feedback ❤️🙏

  • @alster724
    @alster724 2 วันที่ผ่านมา +1

    Got it after obtaining the rectangle's sides

    • @PreMath
      @PreMath  2 วันที่ผ่านมา

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 2 วันที่ผ่านมา

    Sir, in solving the problem u got ur favourite special type of 30 -60-90 triangle.
    We may use the knowledge that side opposite to 60 degree angle is √3 unit.

  • @marcgriselhubert3915
    @marcgriselhubert3915 3 วันที่ผ่านมา +1

    The radius of each circle is R =1, so EF = 4 and it is the big side length of the rectangle ABCD. EFG is an equilateral triangle whose side length is 4, so its height is 4.(sqrt(3)/2) = 2.sqrt(3) and the little side length of the rectangle ABCD is this height plus R, so it is 2.sqrt(3) + 1.
    Finally the area of the rectangle ABCD is 4.(2.sqrt(3) + 1) = 8.sqrt(3) + 4, and the yellow area is 8.sqrt(3) + 4 - 3.Pi. (That was easy.)

    • @PreMath
      @PreMath  3 วันที่ผ่านมา

      Excellent!
      Thanks for the feedback ❤️

  • @santiagoarosam430
    @santiagoarosam430 3 วันที่ผ่านมา +1

    r=1---> AB=4r=4 ; AD=r+r√3+r =2+√3 ---> Área sombreada =4(2+√3) -3π =5,5034...
    Gracias y saludos

    • @PreMath
      @PreMath  3 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @ChuzzleFriends
    @ChuzzleFriends 2 วันที่ผ่านมา +1

    Note that ABCD is a rectangle and NOT specifically a square.
    A = πr²
    π = πr²
    r² = 1
    r = 1
    All three circles are known to be identical and therefore each one has a radius of 1.
    Connect centers O, P, & Q together. We get an equilateral △OPQ with side length 2.
    Label the point of tangency between ⊙O & ⊙P as R. Connect this point to center Q. Segment QR is an altitude of △OPQ. This forms right △ORQ & △PRQ. They are both special 30°-60°-90° right triangles.
    b = a√3
    QR = 1 * √3
    = √3
    Draw radii EO & FP. By the Tangent Line to Circle Theorem, the angles these radii form are right.
    We get a rectangle ABFE. If we use the radius length, we know that EF = 4.
    Therefore, by the Parallelogram Opposite Sides Theorem, AB = 4.
    But there is also a point of tangency between ⊙O and side AB. Draw the radius. By the Tangent Line to Circle Theorem, it should also form right angles.
    Label the point of tangency as H. Also draw radius GQ.
    So, GQ = HO = 1.
    So, AD = 2 + √3. This sounds bold, but ∠EOH is a right angle by the Polygon Interior Angle Sum Theorem. ∠ORQ is already a right angle.
    Yellow region area = ABCD Area - Combined Area of Three Circles
    Combined Area = π + π + π = 3π
    A = lw
    = 4 * (2 + √3)
    = 8 + 4√3
    Yellow region area = (8 + 4√3) - 3π
    = 8 - 3π + 4√3
    So, the area of the yellow shaded region is 8 - 3π + 4√3 square units (exact), or about 5.50 square units (approximation).

    • @PreMath
      @PreMath  2 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 3 วันที่ผ่านมา +2

    S=8+4√3-3π≈5,508

    • @PreMath
      @PreMath  3 วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

  • @MrPaulc222
    @MrPaulc222 3 วันที่ผ่านมา +1

    The radii are all 1 and the total area of circles is 3pi.
    Width of rectangle is 4 due to 4r.
    Yellow area is 4y - 3pi, where y is the height of the rectangle.
    First task: calculate y
    Make a point S so that S is to the left of Q and below O, forming right triangle SQO.
    QO = 2 as it is 2r and is the hypotenuse.
    S is actually 1 from the left of the rectangle, meaning that QS = 1.
    2^2 - 1^2 = 3, so QS = sqrt(3).
    Yellow area = (4*(2+sqrt(3)) - 3pi un^2
    Simplify to 8 + 4*sqrt(3) - 3pi.
    14.9282 - 9.4248 = 5.5. This value is rounded because the final value is the result of two irrationals, sqrt(3) and pi.
    Yes, I used pretty much the same method but with points in different places.

    • @PreMath
      @PreMath  3 วันที่ผ่านมา

      Excellent!
      Thanks for the feedback ❤️

  • @pas6295
    @pas6295 2 วันที่ผ่านมา

    Let the square be named ABCD. Each side is 4R. So the area is 4R^2.But the area of the three circles is 3πR^2.So Yellow shaped figure ara is R^2(16-3π).

  • @misterenter-iz7rz
    @misterenter-iz7rz 3 วันที่ผ่านมา +1

    Instant answer is 4×(2+sqrt(3))-3pi.😊

    • @PreMath
      @PreMath  3 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @AnonimityAssured
    @AnonimityAssured 3 วันที่ผ่านมา +1

    It was easy to work this out in my head, but I still needed a calculator to get a numerical approximation. I could have done it on paper, of course, but who has paper to hand these days? 😊

    • @PreMath
      @PreMath  3 วันที่ผ่านมา

      Excellent!
      Thanks for the feedback ❤️

  • @prossvay8744
    @prossvay8744 3 วันที่ผ่านมา +1

    Yellow shaded area= 4(2+√3)-3π=5.50 square units.❤❤❤

    • @PreMath
      @PreMath  3 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @wackojacko3962
    @wackojacko3962 3 วันที่ผ่านมา +4

    Im so happy being able to solve Premath, I'm gonna go sell popcorn at the carnival. 😊

    • @MrPaulc222
      @MrPaulc222 3 วันที่ผ่านมา +4

      I'm just grateful to the guy for helping to keep my ageing brain working: that becomes more important with the passing of the years.

    • @PreMath
      @PreMath  3 วันที่ผ่านมา +1

      😀
      Thanks for the feedback ❤️

  • @devondevon4366
    @devondevon4366 8 ชั่วโมงที่ผ่านมา

    14.93- 3pi or 5.51

  • @devondevon4366
    @devondevon4366 7 ชั่วโมงที่ผ่านมา

    Answer 5.5034
    Since the area of each is pi, then the radius = 1 (r= sqrt (pie/pie) = sqrt 1 =1)
    Using OPQ, draw an equilateral triangle. Its sides are 2, 2, 2
    Its hypotenuse = 2 and its given base = 1
    Hence, the length of the other base (Pythoagrean) = 1.73205
    Hence, the rectangle's width is the length of the two radii (2) + 1.73205 = 3.73205
    The length of the rectangle is four radii (4)
    Hence, the area of the rectangle = 4 * 3.73205 = 14.9282
    Since the area of the three circles = 3 pi (given) or 9.4248, then
    the area of the shaded region = 14.9282 - 9.4248 = 5.5034

  • @phungpham1725
    @phungpham1725 3 วันที่ผ่านมา +1

    R= 1 -> EF=4
    The width of the rectangle= 1+sqrt3+1=2+sqrt3
    Area of the yellow region=4x(2+sqrt3)-3pi=5.50 sq unnits😅😅😅

    • @PreMath
      @PreMath  3 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @vaggelissmyrniotis2194
    @vaggelissmyrniotis2194 3 วันที่ผ่านมา +1

    Seeing the diagram i thought that it was a square and it messed up my result but i checked the intro again and it was a rectangle thus i tried again and found the correct answer!

    • @PreMath
      @PreMath  3 วันที่ผ่านมา

      No worries😀
      Thanks for the feedback ❤️

    • @wackojacko3962
      @wackojacko3962 3 วันที่ผ่านมา

      It is a square! ... only special. 😊

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 3 วันที่ผ่านมา

    {{90°A+90°B+90°C+90°D+}=360°ABCD/27pi=10.10pi 5^5.5^5pi 2^3^2^3.2^3^2^3pi 1^1^1^1.2^1^1^3pi 23pi (x ➖ 3pix+2).

    • @PreMath
      @PreMath  3 วันที่ผ่านมา

      Thanks for the feedback ❤️

    • @imetroangola17
      @imetroangola17 3 วันที่ผ่านมา +1

      Alien math! Nobody explains this! 🤣🤣🤣 This guy is on all the math channels, spreading his Mars math!

  • @unknownidentity2846
    @unknownidentity2846 3 วันที่ผ่านมา +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    First of all we calculate the radius r of the white circles:
    A = πr²
    π = πr²
    1 = r²
    ⇒ r = 1
    Each pair of circles has exactly one point of intersection. Therefore any distance between two of the three centers is equal to the sum of the corresponding radii:
    OP = OQ = PQ = 2r = 2
    So we can conclude that OPQ is an equilateral triangle. The height h of such a triangle can be calculated by applying the Pythagorean theorem:
    h² = 2² − (2/2)² = 2² − 1² = 4 − 1 = 3 ⇒ h = √3
    Now we can calculate the side lengths of the rectangle ABCD:
    AB = OE + OP + PF = r + 2r + r = 4r = 4
    AD = AE + h + QG = r + √3 + r = 2r + √3 = 2 + √3
    Finally we are able to calculate the area of the yellow region:
    A(yellow) = A(ABCD) − 3*A(circle) = AB*AD − 3π = 4*(2 + √3) − 3π = 8 + 4√3 − 3π ≈ 5.503
    Best regards from Germany

    • @PreMath
      @PreMath  3 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 2 วันที่ผ่านมา

    My way of solution ▶
    Let's calculate the radius of these same circles :
    A= πr²
    π= πr²
    r= 1 length unit
    [AB]= [EF]
    [EF]= 4r

    [AB]= 4 length units
    step-2) Let's calculate the length [AD]
    By considering the equilateral triangle ΔOQP :
    [OQ]= [QP]= [PQ]= a
    a= 2r
    a= 2
    The height of this triangle divides the length [PO] into two equal parts; therefore, by applying the Pythagorean theorem, we can write :
    (a/2)²+h²= a²
    a= 2

    1+h²= 2²
    h= √3
    [AD] = [AE] + h + [QG]
    [AE] = r
    [QG] = r
    h= √3

    [AD]= 1+1+√3
    [AD]= 2+√3
    step-3) Let's calculate the yellow shaded region :
    A(ABCD)= [AB]*[AD]
    A(ABCD)= 4*(2+√3)
    A(ABCD)= 8+ 4√3
    Ayellow= 8+ 4√3 - 3π
    Ayellow≈ 5,50 square units

  • @ManojkantSamal
    @ManojkantSamal 3 วันที่ผ่านมา

    80 /7 (16 -3π)..... May be

    • @PreMath
      @PreMath  2 วันที่ผ่านมา

      Thanks for the feedback ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 3 วันที่ผ่านมา +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) AB = EF = DC = 4 lin un
    02) Let M be the Middle Point between Point E and Poit F.
    03) QM^2 + MP^2 = PQ^2
    04) QM^2 = PQ^2 - MP^2
    05) QM^2 = 4 - 1 ; QM^2 = 3
    06) QM = sqrt(3)
    07) AD = BC = [2 + sqrt(3)] lin un
    08) Rectangle [ABCD] Area (RA) = 4 * 2 + 4 * sqrt(3) ; RA = 4 * (2 + sqrt(3)) sq un ; RA ~ 15 sq un
    09) Yellow Shaded Area (YSA) = RA - 3Pi
    10) YSA = [4 * (2 + sqrt(3)) - 3Pi] sq un
    11) 3Pi ~ 9,425 sq un
    11) YSA ~ 5,5 sq un
    Thus,
    OUR BEST ANSWER :
    The Yellow Shaded Area equal to approx. 5,5 Square Units.

    • @PreMath
      @PreMath  2 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @srf2112
    @srf2112 2 วันที่ผ่านมา +1

    It cracks me up how so many of the commenters here act like they're Matt Damon in Good Will Hunting. I'm just your standard idiot that enjoys watching intelligent logic.

    • @PreMath
      @PreMath  2 วันที่ผ่านมา +1

      I call these math puzzles "gymnastics for the mind!" They make us think and improve mental agility!😀
      We are all lifelong learners!
      Thanks for the feedback ❤️

  • @JoeKeeler1
    @JoeKeeler1 2 วันที่ผ่านมา

    That's not how I'd have solved it. I think my way is easier. For all I know may be a new way as I have iq 193. This is all new to me. I'm in college at 47 learning Calc. I'm finding my thinking is needed in math. I'm discovering how I visualize things are easier than how it's done. Lol