Can you find area of the Red shaded region? | (Squares) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ก.พ. 2025

ความคิดเห็น • 53

  • @alexundre8745
    @alexundre8745 หลายเดือนก่อน +2

    Bom dia Mestre
    Obrigado pela aula

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      Hello dear!
      You are very welcome!
      Thanks for the feedback ❤️

  • @KeithAllen-pg8ep
    @KeithAllen-pg8ep หลายเดือนก่อน +6

    Find the area of the Red shaded region in terms of a, b, and c without radicals. This is how the challenge should have been phrased.

  • @spdas5942
    @spdas5942 หลายเดือนก่อน +1

    Ans b-sqrt(ac)

  • @maggieausten8903
    @maggieausten8903 หลายเดือนก่อน +2

    I think you can write this in many different ways. I think the most interesting point is to eliminate one of the variables using rta + rtc =rtb
    Using this I come to
    Side length of red = 1/2(rta-rtc), so Area is the square of that.
    Much easier to work this in side lengths. I used the Greek letter equivalents.

    • @geraldgiannotti8364
      @geraldgiannotti8364 หลายเดือนก่อน

      This is the way I did it as well. It is a nice easy solution. [Side length of red = (1/2)(rta-rtc)] Thanks for posting!

    • @dantallman5345
      @dantallman5345 หลายเดือนก่อน

      Really interested in this method. The simpler the better.
      But a dumb question here: what do terms rta, rtc, rtb mean? Thx

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 หลายเดือนก่อน +1

    Thanks Sir
    Good work
    That’s very nice
    Good luck with respects
    ❤❤❤❤

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Thank you so much for the kind words and support! ❤️🙏

  • @cyruschang1904
    @cyruschang1904 หลายเดือนก่อน +1

    (√a - √b)^2 = a + b - 2√(ab)
    or
    (√b - √c)^2 = b + c - 2√(bc)

    • @luizfavre9009
      @luizfavre9009 หลายเดือนก่อน +1

      Yes I agree, I think that only a and b is enougth.

    • @cyruschang1904
      @cyruschang1904 หลายเดือนก่อน

      @ Yes, or just b and c 😊

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq หลายเดือนก่อน

    We first complete the rectangle
    Consider the two rectangles with length and width √b & √a -√b and √a -√b & √c
    Now area of the red square
    = above mentioned first rectangle - area of above mentioned second rectangle
    = (√a -√b) √b -(√a -√b) √c
    =(√a-√b) (√b -√c)
    [ from this form we may write
    √(ab ) - √(ac) -b +√(bc )
    =√b(√a +√c) -b -√(ac)
    =√b*2√b - b -√(ac)
    =b -√(ac)
    This is also derived by two persons ]

  • @jamestalbott4499
    @jamestalbott4499 หลายเดือนก่อน

    Thank you!

  • @jacquespictet5363
    @jacquespictet5363 หลายเดือนก่อน +1

    Using a, b, c and x as the sides of A, B, C and X, it is easy to see that X=x^2=(a-c)^2/4.

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq หลายเดือนก่อน

      It was said to derive the area of red square in terms of a, b, c
      But u did not do it

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Thanks for sharing ❤️

    • @maggieausten8903
      @maggieausten8903 หลายเดือนก่อน +2

      Yes this is the only useful answer, as it uses the fact that red is a square to eliminate a variable. Same as what I got. Once you have assigned 2 variables the size of red box is fixed.

    • @maggieausten8903
      @maggieausten8903 หลายเดือนก่อน

      Except using your notation x = X^2, etc

  • @unknownidentity2846
    @unknownidentity2846 หลายเดือนก่อน +2

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Let A (B,C,X) be the side length of the green (blue,yellow,red) square. From the diagram we can conclude:
    A = √a
    B = √b
    C = √c
    B = C + X ∧ A = B + X ⇒ A = (C + X) + X = C + 2X ⇒ X = (A − C)/2
    Therefore the area of the red square turns out to be:
    A(yellow) = X² = [(A − C)/2]² = (A² − 2AC + C²)/4 = (a − 2√(ac) + c)/4
    This expression can be further simplified:
    AC = (B + X)(B − X) = B² − X²
    ⇒ X² = (A² − 2AC + C²)/4 = [A² − 2(B² − X²) + C²]/4 = A²/4 − B²/2 + X²/2 + C²/4
    ⇒ X²/2 = A²/4 − B²/2 + C²/4 = a/4 − b/2 + c/4
    ⇒ X² = a/2 − b + c/2 = (a − 2b + c)/2
    Therefore the area of the yellow square turns out to be:
    A(yellow) = X² = (a − 2√(ac) + c)/4 = (a − 2b + c)/2
    Best regards from Germany

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq หลายเดือนก่อน

      Fine. I like it. Thanks.

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

    • @unknownidentity2846
      @unknownidentity2846 หลายเดือนก่อน

      @@PrithwirajSen-nj6qq Thank you very much for your kind feedback.
      Best regards from Germany

  • @marcgriselhubert3915
    @marcgriselhubert3915 หลายเดือนก่อน +1

    It is also possible to write immediately that x = (sqrt(a) - sqrt(b))^2 = a + b -2.sqrt(a.b) or that x = (sqrt(b) - sqrt(c))^2 = b + c -2.sqrt(b.c).
    It is also possible to write that x = b - sqrt(a.c) (I let the proof to you). Naturally your formula is the best as it contains no radical.

    • @assavinkengkart9141
      @assavinkengkart9141 หลายเดือนก่อน

      I got the same answer (simple). If they need answer x in a,b,c form. Yes, the answer from admin would be great.

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq หลายเดือนก่อน

      Without radical same derivation in another way also done by me.
      May see.
      And with radical also a formula has been derived that is easy to memorise
      (√a -√b) (√b -√c)

    • @marcgriselhubert3915
      @marcgriselhubert3915 หลายเดือนก่อน

      @@PrithwirajSen-nj6qq There a several possible formulas, and this one is fine.

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for the feedback ❤️

    • @jimlocke9320
      @jimlocke9320 หลายเดือนก่อน +1

      @@PreMath The problem statement should have required that the solution not contain any radicals. Otherwise, I don't see why x = (√a - √b)² (from equation 1) and x = (√b - √c)² (from equation 2) are not valid solutions.

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq หลายเดือนก่อน +1

    May see this solution
    side of Red square (x)
    =√a -√b
    = √b -√c
    Hence 2√b =√a +√c -- (1)
    Area of red square (x ^2)
    =(√a-√b) ^2=a+b - 2√(ab) --(2)
    Area of red square (x ^2)
    =(√b -√c) ^2
    =b +c - 2√(bc ) -- (3)
    Adding 2& 3
    2(Area of red square )
    =a +2b +c -2√b(√a+√c)
    = a+ 2b +c -2√b*2√b (form 1)
    =a-2b +c
    Area of red square
    =(a - 2b +c) /2

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq หลายเดือนก่อน

    Another sol
    We may complete the rectangle
    Then Area of red square
    =area of big rectangle -a-b-c - area of small rectangle
    =√a(√a+√b) -a-b-c -√c(√a-√b -√c)
    =√(ab) - b -√(ca) +√(bc)
    =(√a-√b) (√b -√c)

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Thanks for sharing ❤️

  • @Rabaska8
    @Rabaska8 หลายเดือนก่อน

    If A,B and X are the side of the quares.
    X=A-B
    X^2=A^2-2AB+B^2
    or
    x=a+b-2AB
    c is useless
    That's it

  • @yakovspivak962
    @yakovspivak962 หลายเดือนก่อน

    When all boxes are Squares, we don't need box C.
    Otherwise "?" box is rectangle.
    In any case, calculations are primitively easy.

  • @五十嵐特許事務所
    @五十嵐特許事務所 หลายเดือนก่อน

    Let the length of one side of the blue square be X, and the length of one side of the red square be Y. (X+Y)^2=X^2+Y^2+2XY=a, X^2=b…(1), (X-Y)^2=X^2+Y^2-2XY=c, so ∴a+c=2(X^2+Y^2)…(2). Also, if the area of ​​the red square is S, then S=Y^2…(3).
    Substituting (1) and (3) into (2), we get a+c=2(b+S), ∴S=(a+c-2b)/2…(answer)

  • @sergioaiex3966
    @sergioaiex3966 หลายเดือนก่อน +2

    Solution:
    d = Red Square Area
    √a = √b + √d ... ¹
    √d = √b - √c
    √c = √b - √d ... ²
    Equation 1 whole square
    (√a)² = (√b + √d)²
    a = b + 2√bd + d ... ³
    Equation 2 whole square
    (√c)² = (√b - √d)²
    c = b - 2√bd + d ... ⁴
    Adding 3 and 4
    a = b + 2√bd + d
    c = b - 2√bd + d
    ----------------------------
    a + c = 2b + 2d ... ⁵
    Solving for "d" in equation ⁵
    a + c = 2b + 2d
    2d = a + c - 2b
    Therefore:
    d = (a - 2b + c)/2
    d = Red Square Area = RSA
    RSA = (a - 2b + c)/2 ✅

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq หลายเดือนก่อน

      I love it. Thanks

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @pas6295
    @pas6295 หลายเดือนก่อน

    AREA of The RED SQUARE is (a-b)×(a-b).

  • @imetroangola17
    @imetroangola17 หลายเดือนก่อน

    Veja:
    √a ×√c = (√b + √x) × (√b - √x)
    Use: (A+B) × (A-B)=A² - B²
    √(ac) = b - x → *x = b - √(ac).*

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq หลายเดือนก่อน

      This has been done by one. May see in comments. But he /she did not show the derivation.

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Thanks for sharing ❤️

    • @imetroangola17
      @imetroangola17 หลายเดือนก่อน

      ​@@PrithwirajSen-nj6qq Tudo bem, isso já mostra que mais de uma pessoa viu essa parte da questão, pois nem sempre vejo os comentários.

  • @nickchoporis5901
    @nickchoporis5901 หลายเดือนก่อน

    BOOORRRRROIINNGGGG ....

  • @kenhoo3702
    @kenhoo3702 หลายเดือนก่อน +1

    (√a - √b)^2 = area of 🟥.
    What is the other question , I don't know? I didn't watch .

  • @nenetstree914
    @nenetstree914 หลายเดือนก่อน

    My answer is b-(ac)^(0.5)

    • @marcgriselhubert3915
      @marcgriselhubert3915 หลายเดือนก่อน

      It is true. There are several answers.

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Thanks ❤️

  • @wackojacko3962
    @wackojacko3962 หลายเดือนก่อน +1

    I'm still trying to figure out what the square root of a tree is equal too.... 😊

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      😀
      Thanks for sharing ❤️

    • @Slimmo_09
      @Slimmo_09 หลายเดือนก่อน +1

      Find the tree's fourth root and square it. That gives you the tree's principle square root. Negate that, and that's the tree's other square root. No tree should ever have more than two square roots in its life. If you're Irish the square root of a tree is 1.73205.