보스님 감사합니다! 헷갈리는 부분이 있는데 질문드려도 될까요? 어떤함수 f(x)를 x=0에서 매클로린 급수 형태로 나타낼수도 있고 x=a에서 T급수로 나타낼수도 있는건가요? 예를 들어 e^x는 e^x = x + x^/2! + x^3/3! ...... = ( x=1에서 T급수전개) 로 나타낼수도 있는건가요?
네, e^x는 그렇습니다 ㅎ 실제로 e^x와 같은 함수를 x=5에서 테일러 급수 전개 하면 실제로 매클로린 급수와 같은 결과임을 알 수 있어요 왜냐하면 e^x의 매클로린 급수에 x자리에 x-5를 대신 대입할 수 있고, 그렇다면 그는 e^(x-5)에 대한 전개 이지만 e^(x-5)=(e^x)(e^(-5)) 가 되어 (e^(-5))를 양변으로 나누어줄 수가 있겠습니다! 그렇다면, e^x = (e^5) + (e^5)(x-5) + .. 이죠? :) 이를 통해서도 매클로린 급수와 테일러 급수가 서로 다름이 없는 표현식임도 알아낼 수 있습니다 다만 이는 'e^x 와 같은 함수' 에 대해서 입니다, 예를 들어 ln(1+x)는 x에 대한 수렴반경이 정해져 있어서 x=5에서의 ln(1+x)의 테일러 급수와 그의 매클로린 급수가 같지는 않겠습니다 하지만 댓글로 써주신 수식 보다는 e^x 의 매클로린 급수가 1을 포함한다는 것도 꼭 참고해주세요 :) (양변에 x=0을 대입하면 같은 결과가 나와야 되므로)
보통, '해당 지점 x=a에서의 f(x)의 특성을 이용하기 위함' 이라고 생각하시면 됩니다 즉, (양자역학에서도 많이 쓰는 예를 들면) 어떤 함수가 x=a에서 극값을 가질 때, 그 점에 대해 테일러급수로 전개를 해준 후 그 점이 f(x)의 극점이라는 사실을 이용해서 '1차미분항=0' 을 대입할 수 있습니다 그러면 2차미분항 이상의 차수만 남는데, 3차항 부터는 0으로 근사시키는 경우가 많습니다 (x=a 근처의 특성만 본다고 했을 때는 x값이 x=a 전후로 크게 변화가 없다고 가정하므로, x-a 가 매우 작을 것이므로) 이는 결국 어떤걸 유도할 수 있게 하냐면 f(x)가 (x=a에서 최소화 되어 있는) 전자의 임의의 포텐셜함수 일 때는 그 함수를 심플한 조화진동자의 포텐셜함수로 근사시켜 다룰 수 있다는 것을 의미하게 되어요 :) 결론 : 매클로린 급수가 아니라, 따로 x=a에서 전개시켜 주는 이유는 만약 x=0이 아니라 x=a 주위에서의 특성을 이용하고자 할 때 (위와 같은 예시) 테일러전개를 사용하기 위해서라고 답변드릴 수 있겠습니다 :)
감사합니다 많은 도움이 되었습니다. 그런데 하나 궁금한 점이 있습니다. 문제를 풀다보면 이차상미분 방정식의 계수가 해석적(테일러 급수가 존재analytic)인지 아닌지를 판단해줘야 하는 경우가 있는데요, 어떤 다항식을 보고 이것이 해석적이다, 해석적이지 않다를 판단할 수 있는 방법이 무엇인가요? 풀이를 보아도 그냥 해석적이다라고 한문장으로 끝내고 넘어가는 경우가 많아서 조금 어렵습니다. 다시한번 이런자료를 올려주셔서 고맙습니다
안녕하세요, 좋은 댓글 감사드립니다 ^^ 답변드리자면, 우선 제가 공부하기로는 어떤 함수 f가 (계수를 변수 x에 대한 함수라고 볼 때에)해석적이라는 말은 그 f에 대하여 수렴가능한 테일러급수를, 특정 점의 주변에서 전개했을때 그 점에서 갖게되면 (f를 그러하게 등식으로 표현가능하면) 그 f를 x=특정 점 에서 해석적(analytic) 이라고 합니다 :) 저는 깊게 판별하지는 않구요, 쉽게 판별하는 법은.. 각각의 계수가 분수 형태 일 때는 그 계수의 '분모'가 0이 되는 특정점에 대해서는, 자명하게, 테일러급수를 전개할 수가 없으므로 그 점을 , 주어진 2계 상미분방정식의 특이점(singilar point) 라고 합니다 그럴때에 그 계수는 해석적이지 않게되고 2계 상미분방정식의 존재성과 유일성정리를 이용할 수 없게 되어요^^ :)
안녕하세요 과고 1학년입니다. 영상보다 질문이 생겨 여쭙니다. lnx를 매클로린급수로 표현할 때 한 번 미분하면 1/x가 나오고 그 값에 0을 대입해야하는데 이는 어찌 해석이 되니요? e^x=0인 x가 존재하지 않기 때문, 즉 로그의 진수 부분에 0이 들어갈 수 없기 때문에 lnx 같은 경우 매클로린 급수의 의미가 없고 구할 수 없는건가요?
안녕하세요 :) 우선 어떤 함수를 매클로린 급수로 전개하기 위해서는, x=0에서 무한하게 미분이 가능해야 합니다! 그런데 lnx의 그래프를 떠올려보면, x=0에서 미분 가능하지 않습니다. x>0에서만 정의역이 정의되는 것이며 그는 말씀하신 내용대로 e^x=0 을 만족하는 x는 없기 때문이죠. 따라서, 생각하신 부분은 적절한 내용입니다. 즉, 다른 함수에 대해서도 x=0에서 연속이며 좌우에서의 미분계수가 일치하는지를 확인하시면 됩니다 :) (예를 들어 sin과 cos)
고정댓글에 답변드린 부분이 도움이 될 것 같습니다 : ) 즉, 'a가 수렴 반경 내의 값이라면' 테일러 급수의 결과가 실제 함수에 잘 수렴할 것이므로, 적절한 a값을 설정하는 것이 중요합니다. 가령 '최소점 근처에서 아래로 볼록한 함수'를 그 최소점(x0)에서 테일러 전개 시킨 후, x에 대한 2차항 까지만 남기는 근사를 취하는 경우가 있습니다! 그 경우에는 x0가 a이죠.
안녕하세요 :) 말씀하신 '복소삼각함수' 라는 것은 sin 이나 cos안의 x 자리에 복소수 i가 곱해진 형태를 말씀하시는 건가요? : 가능합니다 :) Sin cos뿐 아니라 e^(ix)의 급수전개를 해보셔도 오일러공식과 상응하는 결과를 얻습니다 (e^ix = cosx + isinx)
보스님 감사합니다!
헷갈리는 부분이 있는데 질문드려도 될까요?
어떤함수 f(x)를 x=0에서 매클로린 급수 형태로 나타낼수도 있고
x=a에서 T급수로 나타낼수도 있는건가요?
예를 들어 e^x는
e^x = x + x^/2! + x^3/3! ...... = ( x=1에서 T급수전개)
로 나타낼수도 있는건가요?
네, e^x는 그렇습니다 ㅎ
실제로 e^x와 같은 함수를 x=5에서 테일러 급수 전개 하면 실제로 매클로린 급수와 같은 결과임을 알 수 있어요
왜냐하면 e^x의 매클로린 급수에
x자리에 x-5를 대신 대입할 수 있고,
그렇다면 그는 e^(x-5)에 대한 전개 이지만 e^(x-5)=(e^x)(e^(-5)) 가 되어 (e^(-5))를 양변으로 나누어줄 수가 있겠습니다! 그렇다면,
e^x = (e^5) + (e^5)(x-5) + ..
이죠? :)
이를 통해서도 매클로린 급수와 테일러 급수가 서로 다름이 없는 표현식임도 알아낼 수 있습니다
다만 이는 'e^x 와 같은 함수' 에 대해서 입니다, 예를 들어 ln(1+x)는 x에 대한 수렴반경이 정해져 있어서
x=5에서의 ln(1+x)의 테일러 급수와
그의 매클로린 급수가 같지는 않겠습니다
하지만 댓글로 써주신 수식 보다는
e^x 의 매클로린 급수가 1을 포함한다는 것도 꼭 참고해주세요 :)
(양변에 x=0을 대입하면 같은 결과가 나와야 되므로)
24:04 의 부분 부터 보시면
수렴하는 구간이 -1
@@bosstudyroom 너무너무 감시합니다!!
오늘도 좋은하루 되세요!
저희 교수님보다 훨씬 나으세요 진짜 감사합니다......ㅠㅠㅠ
ㅎㅎ 과분한 칭찬이세요 :)
그래도 도움이 되어드린 것 같아 기쁩니다
수시간동안 책보며 끙끙대다 포기하고 유튜브 보면서 그냥 검색해봤는데 깔끔하게 이해됬어요 문제도 잘풀리구요,, 감사합니다!
정말 뿌듯합니다 :) 친절한 댓글 남겨주셔서 감사해요 ㅎㅎ
문제풀이 해주신 부분까지 잘 이해되었습니다. 감사합니다
:) 친절한 댓글 감사드려요 ^^
이번 편도 잘 보고 가요. 다음 편도 잘 보겠습니당
ㅎㅎ 감사합니다 :)
아직 이걸 배울 나이는 아니지만 미리 이해하고 쉽게 알수있었어요! 도움이 되었습니다! 감사해요!
조금이나마 도움되어 드렸다니 정말 다행입니다 :) 감사해요
이거 보고 바로 이해했어요ㅠㅠ 감사합니다
ㅎㅎ 댓글 감사드립니다 :)
영상보고 이해했습니다 감사합니다!
:) 댓글 감사드려요
테일러 급수랑 매클로린급수 잘 이해가 안됬는데 이 영상보고 이해가 되었습니다. 너무 많은 도움이 되었습니다. 감사합니다!!
저도 정말 감사드립니다 :)
좋은 영상 감사하며, 질문 있습니다~
테일러 급수에서 (x-a)^n에 대한 의미가 궁금합니다. x^n으로 전개하는 것이 아닌 (x-a)^n으로 전개하는 이유가 있는지? 결국 전개하면 x^n의 계수는 정해져 있기 때문에 무의미한 것 아닌가요?
보통, '해당 지점 x=a에서의 f(x)의 특성을 이용하기 위함' 이라고 생각하시면 됩니다
즉, (양자역학에서도 많이 쓰는 예를 들면) 어떤 함수가 x=a에서 극값을 가질 때, 그 점에 대해 테일러급수로 전개를 해준 후
그 점이 f(x)의 극점이라는 사실을 이용해서 '1차미분항=0' 을 대입할 수 있습니다
그러면 2차미분항 이상의 차수만 남는데, 3차항 부터는 0으로 근사시키는 경우가 많습니다 (x=a 근처의 특성만 본다고 했을 때는 x값이 x=a 전후로 크게 변화가 없다고 가정하므로, x-a 가 매우 작을 것이므로)
이는 결국 어떤걸 유도할 수 있게 하냐면
f(x)가 (x=a에서 최소화 되어 있는) 전자의 임의의 포텐셜함수 일 때는
그 함수를 심플한 조화진동자의 포텐셜함수로 근사시켜 다룰 수 있다는 것을 의미하게 되어요 :)
결론 : 매클로린 급수가 아니라, 따로 x=a에서 전개시켜 주는 이유는
만약 x=0이 아니라 x=a 주위에서의 특성을 이용하고자 할 때 (위와 같은 예시) 테일러전개를 사용하기 위해서라고 답변드릴 수 있겠습니다 :)
면접때문에 급수시리즈를 다시 공부해야하는데 너무 유익하빈다
ㅎ_ㅎ 좋은 댓글 감사합니다 :)
감사합니다 많은 도움이 되었습니다. 그런데 하나 궁금한 점이 있습니다. 문제를 풀다보면 이차상미분 방정식의 계수가 해석적(테일러 급수가 존재analytic)인지 아닌지를 판단해줘야 하는 경우가 있는데요, 어떤 다항식을 보고 이것이 해석적이다, 해석적이지 않다를 판단할 수 있는 방법이 무엇인가요? 풀이를 보아도 그냥 해석적이다라고 한문장으로 끝내고 넘어가는 경우가 많아서 조금 어렵습니다.
다시한번 이런자료를 올려주셔서 고맙습니다
안녕하세요, 좋은 댓글 감사드립니다 ^^
답변드리자면, 우선 제가 공부하기로는
어떤 함수 f가 (계수를 변수 x에 대한 함수라고 볼 때에)해석적이라는 말은
그 f에 대하여 수렴가능한 테일러급수를, 특정 점의 주변에서 전개했을때 그 점에서 갖게되면 (f를 그러하게 등식으로 표현가능하면) 그 f를 x=특정 점 에서 해석적(analytic) 이라고 합니다 :)
저는 깊게 판별하지는 않구요,
쉽게 판별하는 법은.. 각각의 계수가 분수 형태 일 때는
그 계수의 '분모'가 0이 되는 특정점에 대해서는, 자명하게, 테일러급수를 전개할 수가 없으므로
그 점을 , 주어진 2계 상미분방정식의 특이점(singilar point) 라고 합니다
그럴때에 그 계수는 해석적이지 않게되고
2계 상미분방정식의 존재성과 유일성정리를 이용할 수 없게 되어요^^
:)
정리하자면, 계수의 분모의 값을 0으로 만드는 (특이점) 점에 대해서는 해석적이지 않다는 답변입니다 ㅎ
@@bosstudyroom 감사합니다! 확실하게 이해되었습니다
문관데 너무 감사합니둥
저도 감사드려요 ^_^
안녕하세요 과고 1학년입니다. 영상보다 질문이 생겨 여쭙니다. lnx를 매클로린급수로 표현할 때 한 번 미분하면 1/x가 나오고 그 값에 0을 대입해야하는데 이는 어찌 해석이 되니요?
e^x=0인 x가 존재하지 않기 때문, 즉 로그의 진수 부분에 0이 들어갈 수 없기 때문에 lnx 같은 경우 매클로린 급수의 의미가 없고 구할 수 없는건가요?
안녕하세요 :)
우선 어떤 함수를 매클로린 급수로 전개하기 위해서는, x=0에서 무한하게 미분이 가능해야 합니다!
그런데 lnx의 그래프를 떠올려보면, x=0에서 미분 가능하지 않습니다.
x>0에서만 정의역이 정의되는 것이며
그는 말씀하신 내용대로 e^x=0 을 만족하는 x는 없기 때문이죠.
따라서, 생각하신 부분은 적절한 내용입니다. 즉, 다른 함수에 대해서도
x=0에서 연속이며 좌우에서의 미분계수가 일치하는지를 확인하시면 됩니다 :) (예를 들어 sin과 cos)
@@bosstudyroom 친절한 답변 감사드립니다 ㅎ
후후후...좋네요
ㅎ_ㅎ
영상 잘보고 있습니다 ㅎㅎ 그런데 테일러급수 식에서 a의 의미를 완전히 이해하지 못하겠는데, a는 필요에 따라 임의로 정할 수 있는 상수인 건가요?
고정댓글에 답변드린 부분이 도움이 될 것 같습니다 : ) 즉, 'a가 수렴 반경 내의 값이라면' 테일러 급수의 결과가 실제 함수에 잘 수렴할 것이므로, 적절한 a값을 설정하는 것이 중요합니다.
가령 '최소점 근처에서 아래로 볼록한 함수'를 그 최소점(x0)에서 테일러 전개 시킨 후, x에 대한 2차항 까지만 남기는 근사를 취하는 경우가 있습니다!
그 경우에는 x0가 a이죠.
@@bosstudyroom 친절한 답변 정말 감사드립니다!
보스님 항상 잘보고 있습니다.
질문이 하나 있는데 복소 삼각함수에서 매클로린 급수로 나타날 때
위의 방법과 똑같이 적용해도 될까요??
안녕하세요 :)
말씀하신 '복소삼각함수' 라는 것은
sin 이나 cos안의
x 자리에 복소수 i가 곱해진 형태를 말씀하시는 건가요?
: 가능합니다 :)
Sin cos뿐 아니라
e^(ix)의 급수전개를 해보셔도
오일러공식과 상응하는 결과를 얻습니다
(e^ix = cosx + isinx)
e^x 텡일러급수식과 그식은 미분한 식이 같나요? 마지막에 미분한식에서 항개스하나모자라서 원식에서 x^n/n!이 무한대로가는지 0으로가는지 어떻게판단하나요
good~~~
댓글 감사합니다 :)
e^x 에서 x=n일때 어떻게성립하나요
테일러 급수를 구하라고 하는 문제에서 꼭 답을 시그마( )로 표현 하지 않고 나열해놓은 식을 써도 되는건가요?
출제자가 문제에서 제시하신 대로 쓰는 것이 제일 낫습니다.
과제 문제 중에- - ++가 반복되는데 시그마로는 도저히 표현을 못허겠어서요... 그럼 식으로 나열이라도 해야겠네요!
저도피피티 만들어보려했는데 소리가 너무 나는데 어떤마이크녹음하셨는지알수있나여
저는 그냥 노트북마이크 씁니다^^