Скажу, что это первое видео на канале, в котором я ничего не понял =/ (а я их почти все смотрел) =//// Ну, то есть, на самом деле понятно, но больше благодаря графикам, чем благодаря аналитическим выкладкам. Очень мелкий шрифт, очень душно =/
Вайлд, это потрясающе, столько усилий ради того, чтобы помочь людям в изучении математики :) Лично для меня, и, думаю, для многих других зрителей, ты великий человек ^^
Wild, вы потрясающий! Потратили 100 часов времени на изучение библиотеки! Теперь можно говорить о математике по новому, а точнее доказывать красивые теоремы с помощью прикольной визуализации, да и ещё с приятной музыкой. Я скажу только одно. Спасибо вам!!!
@@Пётр-з7п 3 года назад типочек коммент оставил, а ты сейчас меня тегаешь. я что тогда кринж ловил с этих слов для детей, что от тебя чуть не блеванул, бездарность)
Шикарная работа!! С нетерпением ждал этого видео! Боюсь представить, сколько строчек кода и текста сценария, терпения и сил понадобилось для этого! Огромная работа, я восхищён! ;D Всё очень классно смотрится, душа радуется! ) Увлекательное математическое путешествие, спасибо!
Wild Mathing, спасибо за видео с красивыми доказательствами теорем выпуклого анализа. Было бы отлично, если бы Вы продолжили тематику выпуклого анализа!
По привычке в голове слышу этот спокойной Английский голос, но ваш лучше) Мне нравится - это шедевр, как геометрия на олимпиадах. P.S: Благодарю вас, что я подсел на математику.
Как же это прекрасно! Получил сильное визуальное удовольствие от просмотра. Очень рад, что Вы решились взяться за manim. Очень надеюсь, что ролики с его использованием будут выходить все чаще.
Насколько я понимаю, движок 3b1b это сборка нескольких python библиотек. Надеюсь, что процесс создания видео не занимать слишком много времени, потому что в таком формате информация крайне наглядная. Спасибо большое ❤️
Редко пишу комментарии подобного характера, но тут это необходимо Ролик великолепный! Вайлд, ты проделал потрясающую и большую работу, спасибо тебе за добрых 100 часов изучения материала) Давно тебя смотрю, твой канал - настоящий самородок. Огромное спасибо тебе за то, что ты делаешь!
Насчёт вопроса 3: Это «расширение» неравенства о средних вытекает из функции х^(3/2). Позже замена х_n = a_n ^2 делает своё дело. Если нужно, могу расписать подробнее.
Я испытал поистине чудесные эмоции, но мой словарный запас слишком мелок, чтобы описать их полностью. Потрясающий формат. Если честно, я даже не надеялся, что можно сделать оформление ещё лучше, чем прежде. Подумать только - сто часов на один ролик! Для этого нужны нехилые запасы терпения и перфекционизма. Всё предельно понятно, не кокает и доводит до катарсиса.
Это было великолепно! Особенно замечательная графика! Продолжайте в том же духе! А на счет задачек: 1. Ну тут два варианта: если f задает прямую, то можно и так легко убедиться, что везде все равно (подcтавив вместо f привычное kx+ b). Если f более сложная функция, из выпуклости последует, что внутри нее целиком (не считая двух крайних точек) расположен отрезок на котором и будет находиться центр масс этих точек. Т.е. для разных точек Ц.М. лежит внутри, откуда следует то все точки совпадают. 2. 1) Да, верно (просто расписать это же неравенство для |xi|) 2) тоже верно (можно убедиться, поставив нули где нужно) 3. Я взял f(x) = x^(3/2). Подставил в неравенство Йенсена (естественно взяв все m = 1/n) , далее для левой части применил неравенство Коши оценив: 1/n(sum(x^(3/2))) = (1/n^3)(sum(x^2))^(3/2) Далее возведя левую и правую часть в степень 1/3 и сокращая подобные множители получаю требуемое. Пусть для любых x: s(k) = (sum(x^k)/n)^(1/k). Мы доказали что: s(-1)
Спасибо за интерес к задачам, все верно! И вопрос задаешь очень хороший! Среднее степенное, которое ты используешь (есть в момент 14:47) - совершенно удивительная вещь. Оно обладает монотонностью не только для целых, но и для действительных показателей. Причем при p → 0 его значение стремится к среднему геометрическому
Очень здорово!!! Больше математического анализа! Нужны видео по кратным интегралам и теории поля, там много красивого можно показать и приложение к физике.
По поводу неравенства для среднего кубического. 1. Рассматриваем функцию y=x^(3/2). Применяем к ней неравенство Йенсена. 2. Так как х_i -положительные, то можем заменить x_i на (x_i)^2. 3. Извлекаем кубический корень
Всё вроде бы и ясно, но так быстро, что только ты ставишь на паузу и въезжаешь, как возобновив ролик, снова нужно въезжать. В общем, красиво и клёво, математикой можно заниматься вечно.
Сначала решил что это 3b1b). Но сделано просто прекрасно!. Давай Тейлора, дифференцирование многих переменных (нужны картинки!), Фурье, ну и хотелось бы целый курс по тер веру
Ответ на вопрос 2: 1) да, верно, ведь левая часть всегда положительна (x^2 € R+, под корнем не может быть отрицательного числа, ЕСЛИ это не комплексное число; 2) верно, если n>= 1.
Глазам своим не верю, это же то легендарное неравенство через которое неравенство Коши доказывается в два действия! Да, графика в видео очень приятная.
Обожаю 3b1b, обожаю тебя, но зачастую прихожу сюда посмотреть красивые анимации и иллюстрации. Хотелось бы побольше простых роликов, побольше связанных так же и с it-темой, без крупных математических выкладок и длинных страшных выражений. Но с Manim ты прям вышел на новый уровень, честно! Продолжай в том же духе, спасибо!
«Старички» быстро устают от моих призывов к продвижению, так что очень приятно вновь видеть добрый комментарий в самый важный момент. Спасибо, Алексей!
Браво автору за освоение новых способов визуализации математики! Уверен, геометрия на канале станет ещё более божественной! :-) Теперь уж WM никуда не деться: придётся догнать и перегнать по подпискам, просмотрам и, конечно, смысловому наполнению 3Blue1Brown!!!
Ну всё, теперь от межнара нас отделяет только неравенство Караматы! (Ну, может, ещё недоказанные теорема о единственности центра масс системы, теорема о выпуклости функции, случай с неотрицательными m_i, неточность, связанная с выпуклостью прямой, и....)
Если изменить выпуклость, то изменится знак неравенства. Интересно вы доказываете Йенсена, мы доказывали его с помощью индукции по количеству точек и с помощью определения выпуклости
Захожу смотреть ролик про нер-во Йенсена, на первых же минутах узнаю еще про несколько новых интересных неравенств. Начинаю смотреть ролики про них и так по кругу
Что ты скажешь на это, дорогой зритель?
Я ничего не скажу, я могу лишь оставить печатный след тут.
В описании под пунктом 6 пропущено «pi»
Видео крутое!
отвал бошки, разрыв....
Просто шокировали, наконец то дождались до матана!
Скажу, что это первое видео на канале, в котором я ничего не понял =/ (а я их почти все смотрел) =////
Ну, то есть, на самом деле понятно, но больше благодаря графикам, чем благодаря аналитическим выкладкам.
Очень мелкий шрифт, очень душно =/
Прикольно видеть этот стиль графиков на твоем канале, как будто слушаю перевод 3Blue1Brown
Офигеть люди с беррибага 🧐
до конца был уверен, что это он и есть
3b1b давно ещё выложил либу для создания анимаций в его стиле
Вайлд, это потрясающе, столько усилий ради того, чтобы помочь людям в изучении математики :)
Лично для меня, и, думаю, для многих других зрителей, ты великий человек ^^
хмм... стоп, теперь у меня будет 3Blue1Brown, только на русском? ХОЧУ ФУРЬЕ И МАТРИЦЫ ПОЖАЛУЙСТА.
А насчёт видео... дайте две!
Ну тащемто и то и другое есть в переводе.
@@ex-format перевод не одно и тоже. А ещё у тут речь очень приятная, узнаваемая из тысячи.
Wild, вы потрясающий! Потратили 100 часов времени на изучение библиотеки! Теперь можно говорить о математике по новому, а точнее доказывать красивые теоремы с помощью прикольной визуализации, да и ещё с приятной музыкой. Я скажу только одно. Спасибо вам!!!
Большое спасибо! Рад, что есть так много зрителей, ради которых хочется развиваться!
Великолепно. За 15 минут несколько раз словил катарсис, посмотрел прекрасные анимации, а под конец вообще кокнуло
Великолепно, за 10 секунд словил кринж от отсталого комментатора
@@zxcghoul8837куда уж ему до тебя
@@Пётр-з7п 3 года назад типочек коммент оставил, а ты сейчас меня тегаешь. я что тогда кринж ловил с этих слов для детей, что от тебя чуть не блеванул, бездарность)
Когда в уведомлениях увидел Wild Mathing и логотип 3B1B, обалдел, подумал у меня глюки 😅
Я обожаю видео от Wild mathing и 3blue1brown, а тут ещё такое...
Вы сохранили свой стиль, при этом использовав достоинства библиотеки Грэнта, получилось замечательно!
Шикарная работа!! С нетерпением ждал этого видео! Боюсь представить, сколько строчек кода и текста сценария, терпения и сил понадобилось для этого! Огромная работа, я восхищён! ;D Всё очень классно смотрится, душа радуется! ) Увлекательное математическое путешествие, спасибо!
Мы оба знаем, что не будь JustMath, не появилось бы и это видео! Так что большое спасибо, Дмитрий! Надеюсь, тоже смогу быть полезен в будущем!
Ясное и понятное объяснение в анимациях. Это очень хорошо объясняет суть, а не просто стоять у доски и пытаться понять набор на непонятном языке.
Wild Mathing, спасибо за видео с красивыми доказательствами теорем выпуклого анализа. Было бы отлично, если бы Вы продолжили тематику выпуклого анализа!
По привычке в голове слышу этот спокойной Английский голос, но ваш лучше)
Мне нравится - это шедевр, как геометрия на олимпиадах.
P.S: Благодарю вас, что я подсел на математику.
Как же это прекрасно! Получил сильное визуальное удовольствие от просмотра.
Очень рад, что Вы решились взяться за manim. Очень надеюсь, что ролики с его использованием будут выходить все чаще.
Спасибо за добрый комментарий! Тоже надеюсь, что продолжение не за горами!
9:13 I think we can do it by taking the function f(x) = x^(3/2) and applying Jensen's inequality on it. Great video!
Спасибо за Ваш труд! Формат очень понравился, тема очень интересная!
Я очень долго ждал видео на этой платформе! Круто!
Прекрасный формат, прекрасное видео, математический анализ играет на струнах души
Спасибо! Рад, что понравилось!
Насколько я понимаю, движок 3b1b это сборка нескольких python библиотек. Надеюсь, что процесс создания видео не занимать слишком много времени, потому что в таком формате информация крайне наглядная. Спасибо большое ❤️
Как всегда, что-то непонятно, но очень-очень интересно. А анимации потрясающие
Просто крутяк. Не перестаёшь удивлять, WM!
Сочетается прекрасно! Отличный движок для сложных иллюстраций!
Редко пишу комментарии подобного характера, но тут это необходимо
Ролик великолепный! Вайлд, ты проделал потрясающую и большую работу, спасибо тебе за добрых 100 часов изучения материала)
Давно тебя смотрю, твой канал - настоящий самородок. Огромное спасибо тебе за то, что ты делаешь!
Большое спасибо за добрые слова!
Стильно, модно, молодежно! И при этом очень интересно 🤗
Как раз проходим на семинарах выпуклость и тут такой ролик подъезжает) Однозначно палец вверх
Насчёт вопроса 3: Это «расширение» неравенства о средних вытекает из функции х^(3/2). Позже замена х_n = a_n ^2 делает своё дело. Если нужно, могу расписать подробнее.
Можно ещё применить функцию f(x) = x^(2/3) и замену m_i = 1/n; a_i = (x_i)^3
Невероятно красивый монтаж! Эти анимации, мельчайшие детали! Восхитительно!
Рад, что понравилось!
Здорово, спасибо 3blue1brown за движок и тебе за материал. Надеюсь и дальше наблюдать такое на этом канале.
P. S. Задонатил немного
Тоже надеюсь на продолжение формата!
Благодарю за донат!
Великолепная библиотека! Очень красиво получилось)
Я испытал поистине чудесные эмоции, но мой словарный запас слишком мелок, чтобы описать их полностью.
Потрясающий формат. Если честно, я даже не надеялся, что можно сделать оформление ещё лучше, чем прежде. Подумать только - сто часов на один ролик! Для этого нужны нехилые запасы терпения и перфекционизма.
Всё предельно понятно, не кокает и доводит до катарсиса.
ваш контент всё более прекрасен об видео к видео. большое спасибо за видео
Не успели эту штуку пройти в первом семестре. Благодаря ролику хоть познакомился, что за фамилии стоят в исключенных вопросах к экзамену, спасибо!
Спасибо за ролик! Ждём что-нибудь про теорию групп, например, как она связана с задачами на раскраску.
Это просто ШЕДЕВР!!!
Насколько это круто 15 минут, а на обдумывание всей информации нужно часа 3. Потрясающее видео
Формат очень понравился, по-медленнее рассказываете, так лучше, пусть и чуть дольше.
Спасибо, формат интересный! В некоторых местах не улавливала преобразования из-за анимации. Желаю Вам успехов и приятных моментов в жизни.
Спасибо за интерес и добрые слова!
Круто! Видос вышел как раз в тот день когда у нас была первая пара по элементам выпуклого анализа)))
Очень классный формат, спасибо за контент!
Питання 3: f(x)=x^(1.5), а попрацювати треба з набором не х1,...,хn, а з числами x1^2, x2^2, ..., xn^2.
P.S Відео ну просто смаколик :)
хлопаю стоя! маним в руках профессионала подарит тонны интересного контента, с нетерпением ждем еще подобных видео!
Спасибо, Никита!
Спасибо за такой качественный контент, сначала думал, что это 3Blue1Brown, но приятно удивился! Топ!
балдею 15 минут подряд! продолжай, прошу тебя
Это было великолепно! Особенно замечательная графика! Продолжайте в том же духе!
А на счет задачек:
1. Ну тут два варианта: если f задает прямую, то можно и так легко убедиться, что везде все равно (подcтавив вместо f привычное kx+ b). Если f более сложная функция, из выпуклости последует, что внутри нее целиком (не считая двух крайних точек) расположен отрезок на котором и будет находиться центр масс этих точек. Т.е. для разных точек Ц.М. лежит внутри, откуда следует то все точки совпадают.
2. 1) Да, верно (просто расписать это же неравенство для |xi|)
2) тоже верно (можно убедиться, поставив нули где нужно)
3. Я взял f(x) = x^(3/2). Подставил в неравенство Йенсена (естественно взяв все m = 1/n) , далее для левой части применил неравенство Коши оценив:
1/n(sum(x^(3/2))) = (1/n^3)(sum(x^2))^(3/2)
Далее возведя левую и правую часть в степень 1/3 и сокращая подобные множители получаю требуемое.
Пусть для любых x:
s(k) = (sum(x^k)/n)^(1/k).
Мы доказали что:
s(-1)
Спасибо за интерес к задачам, все верно!
И вопрос задаешь очень хороший! Среднее степенное, которое ты используешь (есть в момент 14:47) - совершенно удивительная вещь. Оно обладает монотонностью не только для целых, но и для действительных показателей. Причем при p → 0 его значение стремится к среднему геометрическому
Очень красиво и информативно получилось
Уровень анимации для темы запредельный, выглядит шикарно! Спасибо за видео 🙏
Все для вас, все для вас!
не думал, что когда-нибудь увижу этот движок, жаль, что он забросил канал
Разве забросил? Просто редко выпуски бывают.
он вроде говорил что сейчас времени нет
@iqZETA с вероятностью 0.05*
Ого! Не думал, что пойму неравенство Йенсена) Спасибо Wild'у!
Очень здорово!!! Больше математического анализа! Нужны видео по кратным интегралам и теории поля, там много красивого можно показать и приложение к физике.
Лучший аниме-кроссовер о котором можно будет подумать
Быстрое доказательство сложных неравенств, которые используются в решении других задач. Спасибо за интересное видео.
Очень классный формат!
Больше года откладывал просмотр этого видео. И вот, скоро мне пересдавать линал, вспомнил про него =)
Спасибо за ролик!
Ваще Топ.
Это как Героин(осуждаю его применение) для глаз.
Да и контент мощный .
Круто, очень интересно, спасибо!
Ммммммм...красота!
Я пересматриваю уже в 4 раз... это чудесно
Очень качественно, спасибо большое!
Спасибо за видео! Очень познавательно
По поводу неравенства для среднего кубического.
1. Рассматриваем функцию y=x^(3/2). Применяем к ней неравенство Йенсена.
2. Так как х_i -положительные, то можем заменить x_i на (x_i)^2.
3. Извлекаем кубический корень
Совершенно верно!
Я всегда знал, что это произойдет, оставалось только ждать, поздравляю с началом освоением этого инструмента!!!
Всё вроде бы и ясно, но так быстро, что только ты ставишь на паузу и въезжаешь, как возобновив ролик, снова нужно въезжать. В общем, красиво и клёво, математикой можно заниматься вечно.
10:52. Тогда и только тогда, когда левая часть равна правой.
Математика - это просто!
Сначала решил что это 3b1b). Но сделано просто прекрасно!. Давай Тейлора, дифференцирование многих переменных (нужны картинки!), Фурье, ну и хотелось бы целый курс по тер веру
Обалдеть! 3blue1brown сам разработал движок для своего канала? я не знала..
1:26 Синус: "Я же просил не называть меня извилистым!!"
В смысле?
Спасибо! Из этого я знал только КБШ, анимация - класс!
Как же это красиво:)
9:11 f(x) = x^(3/2). f(x)">=0. Из теоремы Йенсена следует:
(x1+...+x2)/n)^(3/2)
Балдеж для ушей и глаз
Конечно понравилось! нужно больше видео!
большое спасибо за видеоролик!
Круто и очень красиво! Катарсис как всегда после видосов Wilda)
Это великолепное великолепие:)
Благодарю Вас!!! Какая красота!!!
Спасибо, что посмотрели!
Ответ на вопрос 2: 1) да, верно, ведь левая часть всегда положительна (x^2 € R+, под корнем не может быть отрицательного числа, ЕСЛИ это не комплексное число; 2) верно, если n>= 1.
Глазам своим не верю, это же то легендарное неравенство через которое неравенство Коши доказывается в два действия!
Да, графика в видео очень приятная.
Обожаю 3b1b, обожаю тебя, но зачастую прихожу сюда посмотреть красивые анимации и иллюстрации. Хотелось бы побольше простых роликов, побольше связанных так же и с it-темой, без крупных математических выкладок и длинных страшных выражений. Но с Manim ты прям вышел на новый уровень, честно! Продолжай в том же духе, спасибо!
Спасибо за добрый комментарий и обратную связь!
Спасибо за проделанную работу!
Вам спасибо!
Восхитительно!
Раньше я думал, что Wild настолько крут, что лучше уже некуда...
Но я ошибался)
Круто! Поздравляю с пробой пера, выглядит супер, ну и содержание вышка, а то уже соскучились по домино "матанчик"
«Старички» быстро устают от моих призывов к продвижению, так что очень приятно вновь видеть добрый комментарий в самый важный момент. Спасибо, Алексей!
Сначала Йенсен, а что потом? Теорема Максима Приходько?
Методы Султанова
@@antshar7388 уже было! th-cam.com/video/C3ns0SejfBA/w-d-xo.html
Ну это же шедевр
Мне в рекоммендациях после этого выбило видео 3Blue1Brown. Маленький шаг для человека - огромный шаг для всего русского математического ютуба!
Это просто шедевр!
как же это красиво
Это прекрасно
это очень круто ! Спасибо за видео !
Grantиозная работа!
Браво автору за освоение новых способов визуализации математики! Уверен, геометрия на канале станет ещё более божественной! :-)
Теперь уж WM никуда не деться: придётся догнать и перегнать по подпискам, просмотрам и, конечно, смысловому наполнению 3Blue1Brown!!!
Большое спасибо, Андрей!
Все еще люблю твои видосики))
В дискорд канале этого движка manimce проходит онлайн обучение. Залетайте все кто хочет научится делать такие же анимации
Ok
Ну всё, теперь от межнара нас отделяет только неравенство Караматы! (Ну, может, ещё недоказанные теорема о единственности центра масс системы, теорема о выпуклости функции, случай с неотрицательными m_i, неточность, связанная с выпуклостью прямой, и....)
по красоте
Кажется, у нас преемник 3blue1brown
Если изменить выпуклость, то изменится знак неравенства. Интересно вы доказываете Йенсена, мы доказывали его с помощью индукции по количеству точек и с помощью определения выпуклости
Захожу смотреть ролик про нер-во Йенсена, на первых же минутах узнаю еще про несколько новых интересных неравенств. Начинаю смотреть ролики про них и так по кругу
очень крутое видео, всегда хотел что бы кто то делал контент подобный 3Blue1Brown на Русском языке
Любимое видео