Can you find area of the circle? | (Fun Geometry Problem) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ม.ค. 2025

ความคิดเห็น • 11

  • @matthieudutriaux
    @matthieudutriaux หลายเดือนก่อน +2

    Hello !
    Here is my personal method : (i never remember your " tangent secant theorem ")
    I use your notations : points A,B,C,D,E,F ; o=angle (FAE) ; r is the radius of the circle
    Let's call O the center of the circle, G the mid-point of [BD] and H the point where the circle is tangent on [EF].
    We can notice that (GO) is the mediator of chord segment [BD].
    AO is the hypothenuse of 2 right-angled triangles : AGO and ACO
    AO^2=AG^2+GO^2=AC^2+CO^2
    AG=AB+BG=AB+BD/2=6*sqrt(3)+9/2
    BGO is a right-angled triangle then : GO^2=BO^2-BG^2=r^2-(9/2)^2
    AC=AF-CF=AE*cos(o)-r=(12+6*sqrt(3))*cos(o)-r
    CO=r
    Finally, we have our first equation:
    AG^2+GO^2=AC^2+CO^2
    (6*sqrt(3)+9/2)^2+r^2-(9/2)^2=((12+6*sqrt(3))*cos(o)-r)^2+r^2
    (6*sqrt(3)+9/2)^2-(9/2)^2=((12+6*sqrt(3))*cos(o)-r)^2
    108+54*sqrt(3)=((12+6*sqrt(3))*cos(o)-r)^2
    (9+3*sqrt(3))^2=((12+6*sqrt(3))*cos(o)-r)^2
    9+3*sqrt(3)=(12+6*sqrt(3))*cos(o)-r
    EO is the hypothenuse of 2 right-angled triangles : EGO and EHO
    EO^2=EG^2+GO^2=EH^2+HO^2
    EG=ED+DG=ED+BD/2=3+9/2
    DGO is a right-angled triangle then : GO^2=DO^2-DG^2=r^2-(9/2)^2
    EH=EF-HF=AE*sin(o)-r=(12+6*sqrt(3))*sin(o)-r
    HO=r
    Finally, we have our second equation:
    EG^2+GO^2=EH^2+HO^2
    (3+9/2)^2+r^2-(9/2)^2=((12+6*sqrt(3))*sin(o)-r)^2+r^2
    (3+9/2)^2-(9/2)^2=((12+6*sqrt(3))*sin(o)-r)^2
    9+27=((12+6*sqrt(3))*sin(o)-r)^2
    6=(12+6*sqrt(3))*sin(o)-r
    Here is our system of 2 equations with 2 unknowns : radius r and angle o :
    9+3*sqrt(3)=(12+6*sqrt(3))*cos(o)-r
    6=(12+6*sqrt(3))*sin(o)-r
    9+3*sqrt(3)-6=(12+6*sqrt(3))*(cos(o)-sin(o))
    (sqrt(3)-1)/2=cos(o)-sin(o)
    ((sqrt(3)-1)/2)^2=(cos(o)-sin(o))^2
    1-sqrt(3)/2=1-sin(2*o)
    sin(2*o)=sqrt(3)/2
    Because 0

    • @MathandEngineering
      @MathandEngineering  หลายเดือนก่อน +1

      Your methods are perfect friend, I can imagine how interesting you find the Question, you shared two perfect methods, thanks. Best regards

  • @shrikrishnagokhale3557
    @shrikrishnagokhale3557 หลายเดือนก่อน +1

    Presentation is attractive but it is very difficult to write while viewing.

    • @MathandEngineering
      @MathandEngineering  หลายเดือนก่อน

      Ok friend, thanks for the comment.
      Please I don't know why exactly you said it's difficult to write, I mean I want to make it easier, but I need you to please explain what's making it difficult for you to write, I am 100% willing to improve the videos so that it becomes simpler. Like I always say I make the videos for you, waiting to hear from you, thanks

  • @marioalb9726
    @marioalb9726 หลายเดือนก่อน +2

    Hypotenuse of right triangle:
    c = 6√3+9+3 = 22,3923 km
    Tangent secant theorem :
    a²=3*(3+9) --> a=6 km
    b²=6√3*(6√3+9) --> b=14,196km
    Pytagorean theorem:
    (a+r)²+(b+r)² = c²
    (a²+2ar+r²)+(b²+2br+r²)=c²
    2r²+(2a+2b)r+(a²+b²)=c²
    r² + (a+b)r+½(a²+b²-c²) = 0
    r² + 20,196 r - 131,9443 = 0
    r = 5,196244 = 3√3 km
    Area of circle:
    A = πr² = 27π km² ( Solved √)

  • @davefudurich4135
    @davefudurich4135 หลายเดือนก่อน +1

    This is why I'm not able too understand , Math had a teacher Raj his instruction was this video !

    • @MathandEngineering
      @MathandEngineering  หลายเดือนก่อน

      Ok please I don't understand what you mean by "his instruction was this video" do you mean he instructed you to watch this video, or he had solve a Question similar to the one in the video,
      Which do you mean please?

  • @matthieudutriaux
    @matthieudutriaux หลายเดือนก่อน +1

    Here is a second personal method with the same notations than my previous comment :
    I use again @MathandEngineering notations : points A,B,C,D,E,F ; o=angle (FAE) ; r is the radius of the circle
    Let's call O the center of the circle, G the mid-point of [BD] and H the point where the circle is tangent on [EF].
    We can notice that (GO) is the mediator of chord segment [BD].
    angle (GOC) = 180° - o ( because AGOC is a quadrilateral with angles : o, 90°, 180°-o , 90° )
    Then :
    AG*sin(o)=OC+OG*cos(o)
    (AB+BD/2)*sin(o)=OC+sqrt(OB^2-BG^2)*cos(o)
    (6*sqrt(3)+9/2)*sin(o)=r+sqrt(r^2-(9/2)^2)*cos(o)
    angle (GOH) = 90° + o ( because EGOH is a quadrilateral with angles : 90°-o , 90°, 90°+o , 90° )
    Then :
    EG*cos(o)=OH+OG*sin(o)
    (ED+BD/2)*cos(o)=OH+sqrt(OB^2-BG^2)*sin(o)
    (3+9/2)*cos(o)=r+sqrt(r^2-(9/2)^2)*sin(o)
    Here is our system of 2 equations with 2 unknowns : radius r and angle o :
    (6*sqrt(3)+9/2)*sin(o)=r+sqrt(r^2-(9/2)^2)*cos(o)
    (3+9/2)*cos(o)=r+sqrt(r^2-(9/2)^2)*sin(o)
    Compared to my first personal method, this method seems not to be a good one.
    For me, this system of equations seems hard to solve.
    I find :
    (y-3*sqrt(3)/2)*P(y)=0
    P(y) is a polynomial expressed with variable y=OG=sqrt(r^2-(9/2)^2)
    For any r>0, we have y=OG>0 and P(y)>0 because, for information :
    P(y)=8*y^3+(108*sqrt(3)+192)*y^2+(2826+1440*sqrt(3))*y+(10368+6183*sqrt(3))
    Then :
    y-3*sqrt(3)/2=0
    y=sqrt(r^2-(9/2)^2)=3*sqrt(3)/2=sqrt(27/4)
    r^2-(9/2)^2=27/4
    r^2=27
    A(circle)=27*Pi km²

  • @marioalb9726
    @marioalb9726 หลายเดือนก่อน +1

    c = 9 km (given data)
    Tangent secant theorem :
    a²=3*(3+c) --> a=6 km
    Similarity of triangles:
    a / 2R = R/ c
    R² = ½a*c = ½*6*9 = 27 km²
    A = πR² = 27π km² ( Solved √ )

    • @soli9mana-soli4953
      @soli9mana-soli4953 หลายเดือนก่อน +1

      Very nice! And without tangent secant , setting H the point of tangency with EF considering similarity between EBH and BDH (right triangle inside the circle) you can write:
      (3+9): 2r=2r:9
      4r^2= 9*12
      R^2=27
      The problem is that we don’t know if B is at the same level of H….😢

    • @marioalb9726
      @marioalb9726 หลายเดือนก่อน +1

      ​​​​​​​​​@@soli9mana-soli4953
      Voglio dire, tu sei brillante e meravigliosa !!
      Come hai detto tu, non sai che B è allo stesso livello di H, questa è solo la conseguenza dell'analisi, non sono dati di input.
      I miei triangoli simili non sono BDH e BEH.
      I miei triangoli rettangoli sono BDD' e B'EH, dove DD' è il segmento DOD' del diametro del cerchio , e anche il segmento orizzontale B'H lo è.
      Il punto B' non corrisponde necessariamente con il punto B.