Eigenvalues of a 3x3 matrix | Alternate coordinate systems (bases) | Linear Algebra | Khan Academy

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 ม.ค. 2025

ความคิดเห็น • 197

  • @kam1am
    @kam1am 10 ปีที่แล้ว +74

    Not only did I learn how to find Eigenvalues, I also learned how to factor a cubic function! Thank you so much for all the good videos Sal, they help me out a lot!

    • @AriKariG
      @AriKariG 7 ปีที่แล้ว +6

      thats great but for people that have exams in 8 hours it would be nice if he simplified it

    • @admirald.rifter1819
      @admirald.rifter1819 ปีที่แล้ว

      @@AriKariG did you pass? haha

    • @AzaanCheema9001
      @AzaanCheema9001 ปีที่แล้ว +2

      @@admirald.rifter1819 5 years later lmao

    • @CEnjoyer
      @CEnjoyer 8 หลายเดือนก่อน

      @@AriKariG i want to know too. Did you pass? Have you graduated?

  • @mohemmedansari8664
    @mohemmedansari8664 3 ปีที่แล้ว +40

    since this video was created in 2009, indeed the explanation is beautiful, easy to be recalled even after 11 years.

  • @MaruTheGreat
    @MaruTheGreat 14 ปีที่แล้ว +6

    I'm so glad this video is online, I'm currently taking a class on Quantum Mechanics (and I'm only 17), and the matrix algebra is incredibly complex, so this made it easier to understand...

    • @DeNollie1
      @DeNollie1 ปีที่แล้ว

      12 years later 👀

  • @samus88
    @samus88 12 ปีที่แล้ว +25

    I've always learned as "A - lambda times I", so all you do is substract a lambda in each of the matrix diagonal.

    • @ryanjackson0x
      @ryanjackson0x 3 ปีที่แล้ว +1

      That's what that means

    • @kaya-sem
      @kaya-sem 5 หลายเดือนก่อน +1

      yeah, same thing, but you get slightly uglier polynomials. Lambda - A is cleaner usually

    • @samus88
      @samus88 5 หลายเดือนก่อน +3

      @@kaya-sem Dude, it's been 12 years. I don't even know what a matrix is anymore.

    • @abhiramkrishnan7202
      @abhiramkrishnan7202 4 หลายเดือนก่อน

      @@samus88 bruhhh

    • @samus88
      @samus88 4 หลายเดือนก่อน +1

      @@abhiramkrishnan7202 For real tho, I haven't been in a math class in over a decade and I legit don't even know what this video is about xD

  • @Unkn0wn500
    @Unkn0wn500 14 ปีที่แล้ว +9

    First of all, thank you for the great tutorial. Though, I prefer (A- lamda l) but offcourse both work. I suggest everyone to use horner's method to reduce the equation. Way faster and in my opinion easier ;).

  • @KraussHelmut
    @KraussHelmut 13 ปีที่แล้ว +4

    Sal, can you PLEASE make a multi variable calc playlist? And thank you so much for everything! I think it's hard to comprehend the help you are giving us all!

  • @mrlevylev3102
    @mrlevylev3102 10 ปีที่แล้ว +3

    Ive spent a good 3 hours on a question trying to calculate eigenvalues and then I found this video and worked it out straight away! Thumbs up and thank you

  • @petecdun
    @petecdun 13 ปีที่แล้ว +1

    @TerminatorSe7en You can do it either way; given that you derive the equation from the definition of an eigenvalue, where A(v)=lambda(v), lambda(v) - A(v) = 0, but also, A(v) - lambda(v) = 0. So, you can use either det(A-lambda In), or det(lambda In - A), they're effectively the same thing.

  • @halorulesyourface
    @halorulesyourface 13 ปีที่แล้ว +1

    so.. much... writing... but still clearer than my prof. thanks man!

  • @Succinsp
    @Succinsp 11 หลายเดือนก่อน

    12:07 I just came over from professor Dave's video on this. Really helpful

  • @0501245
    @0501245 13 ปีที่แล้ว

    This guy is good. He proves that Math is not a secret society .

  • @Hamzrs
    @Hamzrs 8 ปีที่แล้ว +110

    Why couldn't Patrick jmt make a video on this :(

    • @azzzzzz640
      @azzzzzz640 8 ปีที่แล้ว +4

      he has man, he did it on a 2x2 matrix it is the same process just the determinant will be a bit more tedious to calculate

    • @awesome7732
      @awesome7732 4 ปีที่แล้ว +1

      @@azzzzzz640 not the same process at all

    • @ryanjackson0x
      @ryanjackson0x 3 ปีที่แล้ว

      @@awesome7732 elaborate

  • @williamwright4813
    @williamwright4813 3 ปีที่แล้ว

    Even in the year 2021, Sal Khan is still a lifesaver.

  • @realfan91
    @realfan91 9 ปีที่แล้ว +70

    Save me God from this on exam. :|

  • @Cipher71
    @Cipher71 15 ปีที่แล้ว +3

    You are my hero!
    Also:
    12:39
    That's what she said!

    • @divyoroy9056
      @divyoroy9056 4 ปีที่แล้ว

      I come from 2020. Welcome.

  • @AlexKrippner
    @AlexKrippner 12 ปีที่แล้ว +1

    No he is right, I thought the same thing but when he circled the +lambda^2 term it looked like it was negative but it wasnt

  • @ChippyBlack
    @ChippyBlack 13 ปีที่แล้ว +2

    yeah i also think its det(A-lambda), all my uni text books say that for finding eigenvalues and also later on when diagonlising matrices

  • @guube15
    @guube15 13 ปีที่แล้ว +1

    thnks for your helps it makes me feel good and iam happy now after i have watched this vedio . please make it more for benefit

  • @PrinceK3V
    @PrinceK3V 9 ปีที่แล้ว +26

    Shouldn't it be A-(lamda).(I)?

    • @ydrwsh5677
      @ydrwsh5677 9 ปีที่แล้ว +7

      +Prince K3V It is equal to zero anyway

    • @trygvb
      @trygvb 9 ปีที่แล้ว +2

      +Prince K3V Either works. -det(lambda-A)=det(A-lambda). You just factor out a -1. In both cases you are setting it equal to zero. So you could also do 2det(A-lambda)=0 which would be equivalent to det(2A-2lambda)=0

  • @justinballew4871
    @justinballew4871 11 ปีที่แล้ว +34

    My teacher just taught us (a-lambaI) and now I'm confused.

  • @bennykabwela1962
    @bennykabwela1962 8 ปีที่แล้ว +2

    This has made my work easier! Thanks

  • @queenswatcher
    @queenswatcher 13 ปีที่แล้ว

    @rb44 if you times both sides by -1 then it will be. Either notation is right.

  • @amishpatel4634
    @amishpatel4634 11 ปีที่แล้ว +1

    I felt it a lot easier to row-reduce before finding the determinant. Taking Row3 - Row2, we're left with a zero in the bottom-left element (3, 1). Factor out (3 - L) from that row, and expanding across the bottom row, it isn't as much of a mission as the one in the video, with an L^3, finding roots, etc.
    But hey, that's just me! Many thanks, Sal!

    • @littlebigadventures
      @littlebigadventures 10 ปีที่แล้ว

      Shawn Ryan
      Yep row reducing the matrix before the A-(Lamda)i or (Lambda)i-A step will change its eigen values. But Amish means row reducing after doing A-(Lamda)i or (Lambda)i-A to make finding the determinant easier, as row reducing does not change a matrix determinant, and thus you will get the same eigenvaues, hope this makes sense

  • @jralocalsonly
    @jralocalsonly 12 ปีที่แล้ว +1

    WOW! I missed it too. Everyone ignore this comment like the original commentor said to. We all thought it said minus lambda^2 but it actually is "+ lambda^2"

  • @pheranmyolabiyi1215
    @pheranmyolabiyi1215 ปีที่แล้ว +1

    great 🧎

  • @tobsmonster2
    @tobsmonster2 14 ปีที่แล้ว

    @kramaster3
    Yea its actually correct either way as they're both derived from Ax=λIx, i.e
    Ax=λIx
    => 0=λIx-Ax
    => 0=(λI-A)x

  • @user-ky7mf2kp2v
    @user-ky7mf2kp2v 2 ปีที่แล้ว

    out of all videos this is the most useful

  • @bryanSDable
    @bryanSDable 12 ปีที่แล้ว +1

    go back awhile ago, and check before he encircled the +lambda^2

  • @TheLover4you
    @TheLover4you 14 ปีที่แล้ว

    thank you , that was really clear to understand. Much better than my professor.

  • @kramaster3
    @kramaster3 14 ปีที่แล้ว

    @rb44 I think (lamda I - A) is correct because i've seen it some of the other examples, but i guess it doesn't matter which way you put it :)

  • @MyAfricanCats
    @MyAfricanCats 8 ปีที่แล้ว +2

    If you use the row echelon for of Ix-A to make the second row and the first column zero, then you can easily factorize x-3. The way in this video may not work if the solutions are not integers (so we cant guess the roots).

  • @badgerman123456
    @badgerman123456 12 ปีที่แล้ว

    Meant to be a +ve lambda in the row before so it should be
    -4lambda^2 + lambda^2 instead of -4lambda^2 - lambda^2

  • @ItsJoshNorman
    @ItsJoshNorman 13 ปีที่แล้ว

    @Crilleakaroffe Unfortunately, an incorrect correction. Rewind the video to before he circles the coefficients and multiply it out; he has got it right but accidentally circled over the + sign to make it look like a - sign later on in the vid (when we all--in our heads-- go back and double check our calculations for errors like this)

  • @daveamiana778
    @daveamiana778 5 ปีที่แล้ว +1

    This just blew my mind! Thank you!

  • @alexandre10023
    @alexandre10023 14 ปีที่แล้ว +1

    Thank you ! really helpful.

  • @carrots720
    @carrots720 11 ปีที่แล้ว +1

    thank you, possibly just saved my degree :)

  • @medo405
    @medo405 14 ปีที่แล้ว

    Thank you, thank you and thank you...
    Really, you are a hero, sir.
    All my respect and god bless you!!!

  • @kkbalaji08
    @kkbalaji08 14 ปีที่แล้ว

    Thanks Very Easy TO Understand

  • @carultch
    @carultch 2 ปีที่แล้ว

    What is the "rule of Saris" at 5:02? I know how the rule works, but I've never heard it called that. Did I spell Saris correctly, and who is Saris?

  • @1qaz1qaz15
    @1qaz1qaz15 4 ปีที่แล้ว

    P(λ)= (A+(−λ*determinant))

  • @snowboardva2
    @snowboardva2 12 ปีที่แล้ว

    This is only for symmetric matrices, way to be extremely specific and not give a general solution..

  • @iHughes23
    @iHughes23 11 ปีที่แล้ว +1

    Great video, thank you very much!!!!!!

  • @Joel-js2gk
    @Joel-js2gk 7 ปีที่แล้ว

    This guy is a HERO

  • @BENebuchadnezzar
    @BENebuchadnezzar 12 ปีที่แล้ว

    What's the rule he used to find the determinant? I'm not familiar with it, does it work for all matrices or is this a special case due to size or because A = Transpose(A) ?

  • @MattMcq99
    @MattMcq99 14 ปีที่แล้ว

    if you do X-lambda you do not need to reverse the signs of the other values, correct?

  • @FaizanZahidNustian
    @FaizanZahidNustian 12 ปีที่แล้ว

    I liked the video before watching it coz I knew I am gonna love it :)

  • @BeePan2
    @BeePan2 13 ปีที่แล้ว

    The roots are suppose to be both positive or negative right? But awesome video saved my ass on so many occassions lol. Wish me luck on my finals in two days =/

  • @savagememes5576
    @savagememes5576 5 ปีที่แล้ว

    I like it .am finalizing this course this semester

  • @narical
    @narical 14 ปีที่แล้ว

    i wish u did a video related to DIAGONALIZATION......

  • @syedimrannasim1351
    @syedimrannasim1351 9 ปีที่แล้ว

    very useful for my semester

  • @godalmightywtf
    @godalmightywtf 8 ปีที่แล้ว +6

    Bruh. This video. Yes.

  • @Anawnimous20
    @Anawnimous20 5 ปีที่แล้ว

    The video was very helpful

  • @thechhavibansal
    @thechhavibansal 3 ปีที่แล้ว

    amazing content. !!! Thank you

  • @squared8290
    @squared8290 2 ปีที่แล้ว

    First of all, I continue to be amazed and thankful for all the videos. Just brilliant and so calmly and precisely explained. I do have a question about the solving of the characteristic equation which was cubic in lambda. I don't disagree with his method and it's simple and commonsensical so my question in based solely on curiosity. When I first saw the equation, I though immediately it has to be (lambda - 3) squared times (lambda + 3). Why? Explanation: When we have a polynomial in standard form, where the first coefficient is 1, we think through the structure as the first term having a power of n, the next a power of n-1, until we get to the last term where there is no independent variable and hence the power is n-n or zero. However, this view only takes the independent variable, in this case lambda, into account. We could simultaneously think of the power of scalars being multiplied by each other and these are in reverse order when compared to the independent variable. In other words, the first term is scalars to the 0th power, hence the standard coefficient of 1, the next would be to the power of 1, the next to 2, and so on. In the case of a cubic polynomial, the final scalar power, i.e., in the last term, would be 3. (Note that by "power" I mean the number of times scalars are being multiplied together. I'm providing all this context because when I saw the characteristic equation, my immediate thought was simply, what number would multiply out to +27, and if two of them, to -9, and if one of them, to -3? It seemed clear from the signs that there has to be at least one negative term, and for the final term to be +27, there must be two negative terms that therefore cancel, and the only three numbers that can would be -3, -3, and +3 since no other combination of or subset of combinations (subsets due to the lower power of other terms in the characteristic equation) would lead to -9 or -3. Hence, the answer upon inspection and without real calculations must be lambda minus three twice (hence squared) and lambda plus three. My question is, was this the right instinctive approach to get such an answer instantly or was it just dumb luck? For example, using my method, if the characteristic equation would have been lambda cubed - 4 lambda squared - 16 lambda + 64 lambda without really thinking much at all you could see it must be two factors of lambda - 4 and one factor of lambda + 4 for the same reason as outlined above. Interesting trick or out to lunch? I have thick skin so I welcome any corrections...

  • @kasvroo
    @kasvroo 14 ปีที่แล้ว

    nice tutorial
    but does method of multiplication and subtraction to get the characteristic polynomial works with 4x4 matrix??

  • @mylilcritic
    @mylilcritic 13 ปีที่แล้ว

    @Crilleakaroffe why is it -5lamda^2?

  • @johnjunhyukjung
    @johnjunhyukjung 2 ปีที่แล้ว

    how is his handwriting so good with a mouse?!

    • @carultch
      @carultch 2 ปีที่แล้ว

      He probably has a writing tablet that gives the same inputs as a mouse. I have one. You simply hover over the tablet to move your cursor, and touch-down to click. There's a side-button on the stylus to right-click.

  • @jennymaldives
    @jennymaldives 11 ปีที่แล้ว

    thank you sal. you are always the best.

  • @MaxMichael10
    @MaxMichael10 12 ปีที่แล้ว +2

    OH MY GOD, THANK YOU FOR YOUR EXISTENCE.

  • @jeremytan2653
    @jeremytan2653 9 ปีที่แล้ว +9

    We were taught by using A-λI, but why does this show λI-A?

  • @shamsulislampranto5557
    @shamsulislampranto5557 3 ปีที่แล้ว

    Thank you very much :)

  • @heezybrooge
    @heezybrooge 13 ปีที่แล้ว

    You saved my life

  • @RelativelyHostile1
    @RelativelyHostile1 12 ปีที่แล้ว

    no mate the yellow lambda^2 is positive not negative, so it gives a sum of 3lambda^2

  • @The_Elegant_Iguana
    @The_Elegant_Iguana 6 หลายเดือนก่อน

    arent the values on A matrix substracted by the lambda matrix and not the other way around?

  • @SsehKalai
    @SsehKalai 12 ปีที่แล้ว +1

    Obviously not an Engineer are you.
    Use it ALL. THE. TIME.

  • @rbrtchng
    @rbrtchng 12 ปีที่แล้ว

    why are you not my linear algebra professor. My idiot professor during lecture just told us "the characteristic polynomials of a 3x3 will be given because it's just too complicated." Lo and behold, on the test, it was not given. Even the book he uses said that this should be given, but no examples were given. Then he showed us his solution, which skips this whole step because he just copied it out of some textbook that didn't explain it.

  • @lubnabadi
    @lubnabadi 11 ปีที่แล้ว

    Hey, I have a question. When I use the 'usual' method for solving the determinant, I got : (labda + 1)(labda^2- 4labda + 4 - 1) < I miss the minus 1 in the method you are using...
    Can someone explain to me where it went?

  • @dougrudolph5400
    @dougrudolph5400 9 ปีที่แล้ว +4

    isnt -4x^2+-1x^2 = -5x^2. he put -3x^2 when solving for the characteristic equation (p(x) = x^3 - 3x^2 -9x + 27). I just wanted to point that out if you are in fact trying to learn from this

    • @DualFrequency
      @DualFrequency 5 ปีที่แล้ว

      just little silly mistakes haha, but yeah i do see it, its at @8:50 if anyone is wondering

    • @danieldowd2212
      @danieldowd2212 5 ปีที่แล้ว

      he had the wrong sign before it is actually correct

  • @Eaglry
    @Eaglry 12 ปีที่แล้ว

    is the way he solved for a factor of the 3rd degree polynomial always supposed to work if the polynomial can be factored?

    • @carultch
      @carultch 2 ปีที่แล้ว

      If it can be factored, yes. If it can't be factored, you likely need to use a numeric method, or the monster cubic formula.

  • @Pipfilosofen
    @Pipfilosofen 14 ปีที่แล้ว

    @rb44
    it doesn't matter if it's the opposite way

  • @maheenhashmi7680
    @maheenhashmi7680 9 ปีที่แล้ว +1

    I forgot the division method. Is there another method to find the eigenvalues?

    • @zzsalee
      @zzsalee 9 ปีที่แล้ว +2

      Maheen Hashmi Yeah, you could factor by grouping!

  • @m.hamzarahid2293
    @m.hamzarahid2293 4 ปีที่แล้ว +1

    Why do you only have two eigen values for a 3x3 matrix?

    • @carultch
      @carultch 2 ปีที่แล้ว

      If you only have two eigenvalues, you technically still have three, because you have a repeated Eigenvalue. If a cubic has a root on the x-axis that coincides with a turning point, it technically counts as two roots, or a repeated root.

  • @AlexThomson1000
    @AlexThomson1000 14 ปีที่แล้ว

    Thanks. It's actually all just number crunching if you understand the equation that difines eigenvalues.

  • @WofD2
    @WofD2 11 ปีที่แล้ว +5

    is it (A-lambaI)=0 or is it (lambaI-A)=0 ? normally we need to take the absolute value..but you didnt? whyy?

    • @littlebigadventures
      @littlebigadventures 10 ปีที่แล้ว

      U can do both, but i prefer using A - (Lambda)i = 0 as you only need to minus lambda from the diagonals of A as opposed to minusing every value of A from (Lambda)i

  • @NotmyYTchannel
    @NotmyYTchannel 15 ปีที่แล้ว

    Oh my god... you are always keeping up with my lectures all the time!! we just started this unit today!!!

    • @fahadmohamed346
      @fahadmohamed346 3 ปีที่แล้ว

      u still alive???

    • @NotmyYTchannel
      @NotmyYTchannel 3 ปีที่แล้ว +1

      @@fahadmohamed346 haha yes. I am now 29

    • @darkdevil6466
      @darkdevil6466 3 ปีที่แล้ว +1

      @@NotmyYTchannel lol replying after all these years, what a legend

  • @Crilleakaroffe
    @Crilleakaroffe 13 ปีที่แล้ว

    p(lamdba) = lamdba^3 - 5lamdba^2 - 9lamdba + 27 = 0
    Correction?

  • @violetakoth8360
    @violetakoth8360 3 ปีที่แล้ว

    Thank you so much for sharing this it really helped me understand

  • @equanimity26
    @equanimity26 14 ปีที่แล้ว

    @rb44 It can be both.

  • @Fawzi_Mufti
    @Fawzi_Mufti 15 ปีที่แล้ว

    thanks

  • @Hamdamirza35
    @Hamdamirza35 8 ปีที่แล้ว

    thnkq for the lemda how to find .

  • @Oshanii
    @Oshanii 9 ปีที่แล้ว +1

    I think there is a mistake in the video. the matrix is symmetric and non triangular, so there shouldn't be any repeated lambdas. my det was (L for lambda) L^3-3L^2-L+3=0 from here L1=3,L2=1, L3=-1.
    and wolfram says the same.

    • @megef-gu7gm
      @megef-gu7gm 9 ปีที่แล้ว

      +Oshanii Yea I believe the second (llambda + 1) was supposed to be 2(llambda + 1).

    • @xlmentx
      @xlmentx 6 ปีที่แล้ว

      This is what I got aswell. -1,1,3

    • @xlmentx
      @xlmentx 6 ปีที่แล้ว

      Na he's right. Found my mistake.

  • @oskary9944
    @oskary9944 11 ปีที่แล้ว

    Im looking at my notes and its the other way around. I mean that instead of boing (lambda)I - A it's A - (ambda)i

  • @francismali5840
    @francismali5840 ปีที่แล้ว

    What about eigen vectors

  • @mikkiwhistler7769
    @mikkiwhistler7769 11 ปีที่แล้ว

    OMGOSH, THE CALCULATIONS :O

  • @mgearplus92
    @mgearplus92 11 ปีที่แล้ว

    practice it, you will get much faster.

  • @yassine4851
    @yassine4851 2 ปีที่แล้ว

    this video was good but starting at 11:32 it started to be badly explain im sorry

  • @robinho92
    @robinho92 12 ปีที่แล้ว

    Thanks alot man :)

  • @kylediefenthaler6754
    @kylediefenthaler6754 12 ปีที่แล้ว

    for the record i do not think he's a clown, prob much smarter than myself

  • @emirinho99
    @emirinho99 12 ปีที่แล้ว

    is it (A-lambaI)=0 or is it (lambaI-A)=0 ?

  • @jincontrol
    @jincontrol 13 ปีที่แล้ว

    wont finding the determinant by cofactor be easier?

  • @m0stlyharmless42
    @m0stlyharmless42 12 ปีที่แล้ว

    both, those statements are equivalent

  • @Crilleakaroffe
    @Crilleakaroffe 12 ปีที่แล้ว

    7 months later i realize that the above "correction" is an incorrect correction. IGNORE!

  • @overclockk
    @overclockk 11 ปีที่แล้ว

    What about the other factors of 27, will those give more eigenvalues?

  • @seano3946
    @seano3946 9 ปีที่แล้ว

    Great explaination. i would be careful to include the negative integers in the factors of the 27 that you used since some of solutions only contain negative values.

  • @xblackrainbow
    @xblackrainbow 14 ปีที่แล้ว

    amazing.

  • @PoonHunter87
    @PoonHunter87 12 ปีที่แล้ว +1

    is it just me or this guy the guy from ownageprank calls

  • @Epiphender
    @Epiphender 12 ปีที่แล้ว

    Depending on your field you might be surprised.

  • @EpanReza
    @EpanReza 6 ปีที่แล้ว

    what's the name of the software used?

  • @TheAKBUDDHA1
    @TheAKBUDDHA1 9 ปีที่แล้ว +1

    Synthetic division would have sped things up.

  • @faiyazkhan9765
    @faiyazkhan9765 4 ปีที่แล้ว

    Much easier to do det(A-yI)=0 it avoids all the negatives