Eigenvectors and eigenspaces for a 3x3 matrix | Linear Algebra | Khan Academy

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 ม.ค. 2025

ความคิดเห็น • 109

  • @gembarrogo
    @gembarrogo ปีที่แล้ว +5

    For those who had to google what null space is (like me), here's a quick refresher:
    It is defined as the set of all vectors x that satisfy the equation Ax = 0, where A is a given matrix.
    Here are some key points about the null space:
    - The null space contains all solutions to the homogeneous system of linear equations represented by Ax = 0.
    - It forms a vector space, meaning it is closed under both addition and scalar multiplication.
    - The null space of a matrix A is a subspace of R^n, where n is the number of columns in A.
    - If the only solution to Ax = 0 is x = 0, the null space consists of the zero vector alone. This subspace, {0}, is called the trivial subspace.
    - The null space can provide insights into the properties of the matrix and the system of equations it represents.

  • @FloriUchiha789
    @FloriUchiha789 2 ปีที่แล้ว +5

    No professor of my university was able to explain properly how to determine the eigenvectors. They were just computing the end result and never explained how they came up with this result. Thank you very much, you are a genius.

    • @anandpandya9448
      @anandpandya9448 หลายเดือนก่อน

      You are in a wrong university.

  • @riaankorsten973
    @riaankorsten973 8 ปีที่แล้ว +38

    10:32 "Free real estate"
    Awesome video btw!!

    • @devilhunter1555
      @devilhunter1555 6 ปีที่แล้ว +6

      he quoted a meme from the future :)

  • @thetimbo21
    @thetimbo21 10 ปีที่แล้ว +21

    Dear Khan,
    You da real MVP.

  • @ambarishkapil8004
    @ambarishkapil8004 4 ปีที่แล้ว +24

    Great explanation. Now that I have got the theory down, I will somehow need to figure out how to translate all that into Python code 😄.

  • @thembalethuthesacred8520
    @thembalethuthesacred8520 10 ปีที่แล้ว +5

    wow thanks im from university of cape town,i had a problem in reducing ..now im mastering this! you're the real hero!

  • @RickyShehotts
    @RickyShehotts 11 ปีที่แล้ว +17

    It could be either (A - lambda*I)v=0 or (lambda*I - A)v=0 . The two are the same, just differing by a multiple of (-1). Because (-1) is a constant, it can multiply into the parentheses and flip the expression inside, leaving the equation unchanged.

    • @kingsleymilan1669
      @kingsleymilan1669 3 ปีที่แล้ว

      I guess I am kinda off topic but do anybody know a good place to stream new series online?

    • @kingsleymilan1669
      @kingsleymilan1669 3 ปีที่แล้ว

      @Kace Cannon thanks, I went there and it seems like a nice service :) I appreciate it!!

    • @kacecannon6972
      @kacecannon6972 3 ปีที่แล้ว

      @Kingsley Milan No problem =)

  • @puma21puma21
    @puma21puma21 11 ปีที่แล้ว +1

    Thank you, my lecturer sucks. You made something he made complicated easy again.

  • @finnvankolmeschate6168
    @finnvankolmeschate6168 6 ปีที่แล้ว +4

    The real estate part really helped me out!

  • @dieguinf1988
    @dieguinf1988 14 ปีที่แล้ว +1

    Thanks to you I'm going to be able to pass my class.... Thank you soooooo much ;)

  • @Woddknife
    @Woddknife 14 ปีที่แล้ว +1

    Thank you - You pushed my Math AND English skill through the roof - Funny that the German word: Eigenvector became a "special" word (It could have been just be translated to "own - vector") =)

  • @NICKNEWCOMER-n6r
    @NICKNEWCOMER-n6r 10 หลายเดือนก่อน

    Thank you so much!!! This helped me on a problem I was stuck on forever!

  • @VSci_
    @VSci_ 8 ปีที่แล้ว +1

    Should have put emphasis on v3 being the free variable (row not containing a leading 1) which is why you chose v3=t. other than that very clear explanation!

  • @autogordel
    @autogordel 12 ปีที่แล้ว

    Excellent, bad explanation at college, thank you so much for your video!

  • @ThePengcipal
    @ThePengcipal 14 ปีที่แล้ว

    I came from precalc, listened to the first minute, and barfed
    THANK GOD FOR KHAN ACADEMY

  • @therealalphageek
    @therealalphageek 13 ปีที่แล้ว +1

    YOU ARE THE BEST!!! :D You just cleared all the questions I sent to my professor 3 hours ago in 30 minutes ahah!!!.. YOU ARE THE BEST :D

  • @cheetah770
    @cheetah770 13 ปีที่แล้ว

    thank u vry mch............nw i feel so gud for the eigen vectors....although i watchd ur video jst before a dy of my EXAM :-)

  • @Melsi1979
    @Melsi1979 13 ปีที่แล้ว

    I should had come here earlier, so many tutorials, they avoided taking a 3x3 matrix or explain in detail what's happening, like it is a big deal to work on 2x2 matrix. Thanks a lot!
    I am sad to say but once again is proven that internet is full of bad quality job (tutorials)!

  • @jkjonk
    @jkjonk 12 ปีที่แล้ว +1

    Could you possibly do a video of why I am hearing this terminology in my Differential Equations Class?

  • @tintintintino
    @tintintintino 13 ปีที่แล้ว

    I'll have an exam this morning and you ARE a lot of help. Thank you veeeery much!

  • @klbrumann
    @klbrumann 11 ปีที่แล้ว +1

    Oh wow, was stressing about the last step in finding the Eigenvalues but this made it incredibly clear, thanks a lot :)

  • @kevinscott9013
    @kevinscott9013 5 ปีที่แล้ว

    Sal I'd really enjoy it if the example you made wasn't of nullity 2, as a full matrix probably would've helped me more.

  • @casinarro
    @casinarro ปีที่แล้ว

    u just pulled so many knots in my brain

  • @Benjamin_Bratten
    @Benjamin_Bratten 13 ปีที่แล้ว +1

    if i had a nickel for every lab this guys helped me with id have 2 nickels

  • @jpa84iq
    @jpa84iq 14 ปีที่แล้ว

    His explanations are pretty clear though he's a little disorded . Very good overall!!

  • @vorapsak
    @vorapsak 12 ปีที่แล้ว

    Because elementary row operations change the value of the determinant, so you'd have to "undo" them again anyway; might as well only do them once.

  • @FrankMlS
    @FrankMlS 11 ปีที่แล้ว

    much better than my books! thanks a lot

  • @kumoraz
    @kumoraz 14 ปีที่แล้ว

    you my respected mare r an absolute legend..!SAVIOUR

  • @zhubizi
    @zhubizi 13 ปีที่แล้ว

    GREAT!!! Really clear and helpful!!!!!!

  • @benswimmin
    @benswimmin 13 ปีที่แล้ว

    Thank you! Very clear and comprehensible.

  • @Kalpa9049
    @Kalpa9049 13 ปีที่แล้ว

    thanks god..!! you are great!!!

  • @OutrunExile
    @OutrunExile 12 ปีที่แล้ว

    It'd be cool if I had a professor who who any of this stuff.

  • @Alaakanno
    @Alaakanno 13 ปีที่แล้ว

    All respect to your effort man ....wish that all the world is like you :)

  • @ClaytonOT
    @ClaytonOT 13 ปีที่แล้ว

    you saved me on my final last spring.

  • @jerrytakou1843
    @jerrytakou1843 3 ปีที่แล้ว

    my exam is good now !!

  • @alvis1811
    @alvis1811 12 ปีที่แล้ว

    thank you very much

  • @malemusa7900
    @malemusa7900 6 ปีที่แล้ว

    Thanks Sal!

  • @Mstrkllr9
    @Mstrkllr9 13 ปีที่แล้ว +1

    @unkown1414
    totally agree
    must be tablets man, he's too precise

  • @AdelKnight1
    @AdelKnight1 14 ปีที่แล้ว

    Thank you this clear many pictures for me :)

  • @fluxcapacitor05
    @fluxcapacitor05 11 ปีที่แล้ว

    @khanacademy
    I'm looking at my book now, shouldn't the eigenvalue solutions be derived from the equation: det ( A - [lambda] I) = 0 ? @1:50, I can see the equation from which the eigenvalues are derived from as: ([lambda] I - A) V =0 , which is the reverse. The book says to "find the null space of the matrix A - [lambda]I. This is the eigenspace E_lambda, the nonzero vectors of which are the eigenvectors of A..." The book is: "Linear Algebra: A Modern Introduction", 3rd E, Poole, p303

  • @TwistedMentality089
    @TwistedMentality089 12 ปีที่แล้ว

    thank you

  • @ashidilkhan
    @ashidilkhan 12 ปีที่แล้ว +2

    Jazak allah

  • @ashk0n
    @ashk0n 14 ปีที่แล้ว

    @ashk0n also eigenmatrices have many applications to number theories aka that if the dominant singular valueso f a matrix P is greater than the dimension of any other matrix then the supremem of P times Q is always equal to the eigenvalues of something

  • @ashk0n
    @ashk0n 14 ปีที่แล้ว

    @MartinRyleOShea
    if the det(A - lambda*identity) = 0 then lambda is an eigenvalue of A.

  • @greatgeniusguy
    @greatgeniusguy 10 ปีที่แล้ว

    When finding the eigenvectors, do we really have to do gaussian elimination and reduce one of the rows to all 0's? Because I sometimes I have different results than the book provides.

  • @AlphaBetaParkingLot
    @AlphaBetaParkingLot 15 ปีที่แล้ว

    Hallelujah! PRAISE THE LORD!

  • @My3BEPb
    @My3BEPb 13 ปีที่แล้ว

    I LOVE METH!!!!!.....i mean MATH!!!!

  • @ilovechocolateandran
    @ilovechocolateandran 12 ปีที่แล้ว

    thank you! my teacher aint got nothin on you

  • @ItzMorphinTime22
    @ItzMorphinTime22 11 ปีที่แล้ว

    I thought for every NxN matrix you have a character polynomial to the Nth degree with N number of eigenvalues that correspond with the same N number of eigenvectors. So wouldnt you need 3 eigenvalues that have 3 eigenvectors each for this example?

  • @Theoneyao
    @Theoneyao 13 ปีที่แล้ว

    Isn't it |A - (lambda)(I)| -> [determinant of {A minus (lambda x Identity matrix)}]?

  • @jstrong151
    @jstrong151 13 ปีที่แล้ว

    YES

  • @trygvb
    @trygvb 8 ปีที่แล้ว +1

    This is a strange method for solving for the nullspace. It looks like you're arbitrarily picking either v1, v2, or v3 to be equal to 1t. You should specify that v3=1 because it is a pivot variable.

    • @devikabsree8087
      @devikabsree8087 8 ปีที่แล้ว

      +DanO Yes, even I feel this method is strange. I checked some 3 text books and numerous pages on internet and couldn't find anything similar to this. But this really works. When I created a modal matrix M using these eigen vectors and then diagonalised it using M^(-1)AM, I actually obtained a diagonal matrix. (My original objective was to diagonalise a matrix but I didn't know how to obtain M for repeated eigen values, so I watched this video). And this is the easiest method to obtain eigen vector for repeated eigen values.

  • @JanviHiren1684
    @JanviHiren1684 11 ปีที่แล้ว

    where can I find electricity and magnetism videos which would explain everything just like this.

    • @jeevan288
      @jeevan288 6 ปีที่แล้ว

      @ Khan Academy.

  • @shashibhushansharma1383
    @shashibhushansharma1383 7 ปีที่แล้ว

    is E-3 perpendicular to E3. both span of E-3 is perpendicular to each other, but E3 is not perpendicular to both. this is my thinking. please​ explain me.

  • @Boulie1000
    @Boulie1000 11 ปีที่แล้ว

    What happens if when you row reduce your matrix you get a zero column, how can you find the eigenvectors.

  • @vtn08
    @vtn08 12 ปีที่แล้ว

    What happens when the reduced row echelon form of a 3 x 3 is

  • @samanthatotalyrules
    @samanthatotalyrules 14 ปีที่แล้ว

    hi can i ask if it is necessary to reduce the matrix?

    • @X3r1k
      @X3r1k ปีที่แล้ว

      yes

  • @cemtekesin9033
    @cemtekesin9033 11 ปีที่แล้ว

    Is it because we have free variables, we don't need to normalize it? Thank you

  • @rambodtabasi9333
    @rambodtabasi9333 8 ปีที่แล้ว +1

    Thanks for your useful videos. But can you please get a new microphone the noise sometimes makes it hard to follow the video all the way

    • @brandonthesteele
      @brandonthesteele 8 ปีที่แล้ว +2

      This was made almost 7 years ago, I'm pretty sure he got a new mic since then.

  • @danmouth1
    @danmouth1 7 ปีที่แล้ว

    also why have you overcomplicated the eigenvector for eigenvalue=3? what’s wrong with (1,1,1)

    • @william6171
      @william6171 7 ปีที่แล้ว

      You can't just choose any eigenvalues, in the previous video he found them: th-cam.com/video/11dNghWC4HI/w-d-xo.html

    • @teamdark9022
      @teamdark9022 5 ปีที่แล้ว

      Eigen space would be same if you were to keep (1,1,1) and (0,1,1) just calculate

  • @anatolbeck1992
    @anatolbeck1992 13 ปีที่แล้ว

    The real superman!

  • @josenator1821
    @josenator1821 6 ปีที่แล้ว +1

    so eigen vectors and eigen space is the same thing?

    • @teamdark9022
      @teamdark9022 5 ปีที่แล้ว

      Basically there are infinite eigen vectors, eigen space is the collection of those eigen vectors

  • @paranoidandroid447
    @paranoidandroid447 11 ปีที่แล้ว

    this guy is definitely jesus. i mean, his voice doesn't sound exactly like what you'd expect it to, but still, he must be jesus. he has come back to help us with maths!

  • @danmouth1
    @danmouth1 7 ปีที่แล้ว

    don’t understand why you use row reduction when it really isn’t necessary, the eigenvectors are obvious just from looking at A-lamda x identity

  • @Infinitoid
    @Infinitoid 13 ปีที่แล้ว

    totally saving my ass for my exam tomorrow.

  • @WofD2
    @WofD2 11 ปีที่แล้ว

    can you explain why it is (lambda I - A) V = A instead of (A - lambda I) v = 0

    • @RickyShehotts
      @RickyShehotts 11 ปีที่แล้ว +1

      It could be either (A - lambda*I)v=0 or (lambda*I - A)v=0 . The two are the same, just differing by a multiple of (-1). Because (-1) is a constant, it can multiply into the parentheses and flip the expression inside, leaving the equation unchanged.

  • @athenovae
    @athenovae ปีที่แล้ว

    8:07 what in the fuq. Bruh. LMAOOO

  • @Geniusv3
    @Geniusv3 8 ปีที่แล้ว

    you choose v3= t out of free choice! but if i choose v2=t my vector will be completely different. or can the "t" adjust the vector?
    does it even make a difference? this is the only thing stopping me from understand this subject i math! i understand how to work with it, but i dont understand the outcome!!

  • @ashk0n
    @ashk0n 14 ปีที่แล้ว

    Um I don't think you got this right. An eigenvector is not a basis of a subspace. It is a collection of eigenvalues that are spread out from eachother. For example, if the eigvenvalues for a matrix A are 1 and 3, then the eigenspace is 3+1 = 4.
    The same is true for complex eigenvalues and their corresponding eigenspaces.

  • @samfitzpatrick1866
    @samfitzpatrick1866 9 ปีที่แล้ว

    How do i find the eigenvector if when I reduce the nullspace I get the vector [100, 010, 001] instead of [100,010,000]?

    • @TheSharkasmCrew
      @TheSharkasmCrew 9 ปีที่แล้ว

      ***** the null space is composed of only the zero vector, because the rows of the matrix are linearly independent. This means that there is no eigenvector because the eigenspace has 0 dimension. Or actually.. Maybe it means the eigenvector is [0,0,0]. Anyone know?

    • @DrRabbit0
      @DrRabbit0 7 ปีที่แล้ว

      By definition the eigenvector is a nonzero vector. If you would allow it to be one, than every matrix would have unlimmited amount of eigenvalues, because zero-vector is allways maped (at least in linear transformations) to (another) zero-vector and the later multiplied with any number is zero-vector again. It`s like excluding the zero-vector from basis. Its is L.I. from all other vectors, but he brings no new or even any information to the basis.

  • @MrSprakit
    @MrSprakit 12 ปีที่แล้ว

    he's a teacher. he has like 6 degrees, just look him up on wikipedia

  • @arsenalwak
    @arsenalwak 11 ปีที่แล้ว

    Lets just change colours for fun :D

  • @turkce
    @turkce 12 ปีที่แล้ว

    I love you.

  • @lydon1337
    @lydon1337 14 ปีที่แล้ว

    the gods have answered...

  • @mohids
    @mohids ปีที่แล้ว

    Is it just me or is there an actual mistake in the calculations of the rows for the second eigenvector?
    The second row:
    -2-(-2)= 0
    -5-(-2)= -3
    1-(-2)= 3, and not -3
    similarly in the third row:
    -2-(-2)= 0
    1-(-2)= 3, and not -3
    -5-(-2)= -3, and not 3

  • @saadafm
    @saadafm 3 ปีที่แล้ว

    I love you

  • @okandalaft
    @okandalaft 13 ปีที่แล้ว

    eigenkosommak

  • @RelativelyHostile1
    @RelativelyHostile1 12 ปีที่แล้ว

    v1+v3=0
    v2=0

  • @mrHazzardous6
    @mrHazzardous6 10 ปีที่แล้ว

    I have a matrix A = {{7,-5,0},{-5,7,0},{0,0,-6}}
    I have found the Eigenvalues, 2,12,-6 but I'm only getting one Eigenvector, (0,0,1)..
    Can someone please help?

  • @CaleMcCollough
    @CaleMcCollough ปีที่แล้ว

    This explanation is not generalizable. Lets say R1 has 1 for X_3. What do you do then? I'm just assuming, which means I get it wrong on the homework and test and it takes me longer to do my homework. You need to explain the edge cases better. Thanks.

  • @xblackrainbow
    @xblackrainbow 14 ปีที่แล้ว

  • @Babelfish112
    @Babelfish112 13 ปีที่แล้ว

    I love you

  • @eggo5643
    @eggo5643 4 ปีที่แล้ว

    "V2 is equal to... I'm just gonna put some random number"
    random number: *A*

  • @arep1030
    @arep1030 6 ปีที่แล้ว

    didnt understand

  • @wadexism
    @wadexism 12 ปีที่แล้ว

    LOL

  • @anandpandya9448
    @anandpandya9448 หลายเดือนก่อน

    Not as good as your other videos in the same area.

  • @ButtPlugsInMyButt
    @ButtPlugsInMyButt 12 ปีที่แล้ว

    Is this all the same guy? He teaches the Org Chem too. Is this guy just a professor by hobby?

  • @reubenwilliammpembe667
    @reubenwilliammpembe667 7 ปีที่แล้ว

    Thank You