El Verdadero LOGARITMO NATURAL

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ม.ค. 2025

ความคิดเห็น • 60

  • @matematicasebau
    @matematicasebau  11 หลายเดือนก่อน +12

    ¿Te pareció interesante el vídeo? 👇Te leo en comentarios 👇

  • @wendolinmendoza517
    @wendolinmendoza517 11 หลายเดือนก่อน +25

    La definición original de John Napier era mecánica. Los logaritmos eran útiles para cálculos con números grandes ya q reducen productos a sumas y potencias a productos.
    Se trató de fundamentar en el cálculo posteriormente, como una integral, lo cual es interesante e incluso facilitaba su cálculo. Creo q Isaac Newton utilizó esta definición mediante la integral.
    Fue Euler (en analysis infinitorum, o algo así) quien finalmente vinculó logaritmo y exponencial como funciones inversas la una de la otra.
    Además consiguió dar un desarollo en serie de potencias de ambas (lo cual facilitaba su uso teórico y cálculo práctico), dando el inmortal nombre a la constante 'e' (nombre completamente casual por cierto).
    Recomiendo el libro 'Euler, el maestro de todos los matemáticos', de la editorial Nívola. Tiene un capítulo dedicado a comentar el razonamiento de Euler para conseguir todo esto.

  • @Miyersitoo
    @Miyersitoo 11 หลายเดือนก่อน +24

    Acabo de buscar, el logaritmo neperiano y el logaritmo natural son dos conceptos bastante distintos, pero que informalmente se usa el mismo nombre para lo mismo, John Napier definió el logaritmo neperiano de forma muy distinta al logaritmo natural.
    Sinceramente no entiendo por qué en España le dicen logaritmo neperiano al logaritmo natural, creo que en el resto del mundo (o al menos en mi país) se le conoce solo como logaritmo natural (porque el neperiano es otra cosa jeje).
    No obstante, muy buen video y muchas gracias por compartilo con nosotros c:

    • @matematicasebau
      @matematicasebau  11 หลายเดือนก่อน +9

      Gracias por el comentario.
      Le llamamos también neperiano precisamente porque es el logaritmo de base e. Este número a veces se llama número de Napier (traducido al español Neper).
      Saludos.

    • @ecavero1
      @ecavero1 11 หลายเดือนก่อน +2

      @@matematicasebauSi bien Napier inventó el logaritmo, utilizó otro número distinto que no es el número e. Y, sí. El resto del mundo le dice logaritmo natural al logaritmo de base e.

  • @laro4637
    @laro4637 หลายเดือนก่อน +1

    Buena explicación

  •  11 หลายเดือนก่อน +3

    Muy buen video y la forma alternativa de deducir el número e. Tradicionalmente en la ESO, no hay más remedio que tirar de la formula del interés compuesto para dar con el número e, ya que es demasiado pronto para hablar de integrales.

    • @matematicasebau
      @matematicasebau  11 หลายเดือนก่อน

      Es siempre bueno para los alumnos de 2° de bachillerato que ya saben integrales que conozcan esta definición alternativa.
      Saludos.

  • @enriqueb878
    @enriqueb878 11 หลายเดือนก่อน +2

    Excelente!! Me hace recordar lo que aprendí hace 50 años atrás..!!

  • @neto6517
    @neto6517 11 หลายเดือนก่อน +5

    Tenes un canal muy bueno.

  •  11 หลายเดือนก่อน +2

    Una expicación muy interesante.

  • @juancarlossanchezveana1812
    @juancarlossanchezveana1812 11 หลายเดือนก่อน +1

    Excelente explicación

  • @bigbrother9896
    @bigbrother9896 11 หลายเดือนก่อน +37

    El problema de esa "definición" es que requiere de conocimientos de cálculo-análisis que no están disponibles en la enseñanza elemental, cuando se introducen los logaritmos.

    • @matematicasebau
      @matematicasebau  11 หลายเดือนก่อน +16

      Pero el fundamento matemático del logaritmo sólo surge realmente después del cálculo integral

    • @bigbrother9896
      @bigbrother9896 11 หลายเดือนก่อน +1

      Pues no, el logaritmo se define en general para una base dada a, sin importar el valor de esa base. El número e es un número no más, no es necesario entrar en detalles sobre su naturaleza para definir el logaritmo.

    • @bigbrother9896
      @bigbrother9896 11 หลายเดือนก่อน +5

      El logaritmo se introduce en la enseñanza elemental sin necesidad de referencia alguna a sus fundamentos en el análisis.
      De igual manera se introducen los números sin referencia alguna al algebra abstracta superior donde se discuten los conjuntos con estructura: cuerpos, campos, anillos, grupos, algebras, espacios vectoriales, etc, etc,.

    • @gamusin2044
      @gamusin2044 11 หลายเดือนก่อน +2

      ​@@bigbrother9896tienes razón, a mí me explicaron en secundaria, previo a entrar en cálculo infinitesimal que "Un logaritmo se trata del exponente al que tienes que elevar una base A para obtener un número B"
      Logaritmo de base 3 para 9 = 2 porque 3^2 = 9
      Con esa definición tan de andar por casa se entiende perfectamente el concepto de logaritmo.

    • @Msss3772
      @Msss3772 11 หลายเดือนก่อน

      Exacto. Al fin y al cabo solo se utilizan propiedades del logaritmo y el resto es calculadora. Entonces en la práctica no es tan necesario saber todo eso

  • @mathsalomon
    @mathsalomon 11 หลายเดือนก่อน +2

    El logaritmo natural, denotado como "ln", es el logaritmo en base e, donde e es una constante matemática aproximadamente igual a 2.71828. Esta base se denomina "natural" porque surge de forma natural en diversos contextos matemáticos y científicos, especialmente en cálculo y análisis matemático.
    El número e tiene numerosas propiedades interesantes y aparece en muchos campos de las matemáticas y la ciencia, como en el crecimiento y decaimiento exponencial, en la resolución de ecuaciones diferenciales, en la teoría de la probabilidad, entre otros.
    El logaritmo natural es especialmente útil en cálculo diferencial e integral, ya que simplifica muchas operaciones y permite expresar funciones exponenciales de una manera más compacta.

  • @mendicantbias-117
    @mendicantbias-117 8 หลายเดือนก่อน +1

    Venia sin saber y salgo sabiendo que sé menos de lo que pensaba

  • @carlosvilloria9809
    @carlosvilloria9809 11 หลายเดือนก่อน

    Excelente. me pregunto entonces como defines el logaritmo para otras bases diferentes de "e".

    • @matematicasebau
      @matematicasebau  11 หลายเดือนก่อน +1

      Buena pregunta. Es una expresión análoga pero ahora en el denominador de la fracción multiplicas por el logaritmo neperiano de la base.

    • @carlosvilloria9809
      @carlosvilloria9809 11 หลายเดือนก่อน

      @@matematicasebau Me refiero a como defines los logaritmos de cualquier base como la integral de 1/X?. Por cierto; no tengas dudas en hacer los videos un poco mas largos. Buen contenido !!!

  • @nicolascamargo8339
    @nicolascamargo8339 7 หลายเดือนก่อน

    Genial el video

  • @PabloYP-u3r
    @PabloYP-u3r 11 หลายเดือนก่อน +3

    Muy buen video

    • @matematicasebau
      @matematicasebau  11 หลายเดือนก่อน +1

      Gracias me alegro que te guste

  • @2atorrantes
    @2atorrantes 11 หลายเดือนก่อน +1

    Por acá tendría que empezar todo profesor para definir y visualizar el (ln e). El número "e" tan utilizado en matemáticas como en física debiera ser mejor comprendido desde el vamos, para de esa manera saber utilizarlo, o deducir por qué se lo está usando.

  • @JhoanSaldana-pk6cd
    @JhoanSaldana-pk6cd 11 หลายเดือนก่อน

    Super amigo!!!

  • @fisicamatematicasprofewilliam
    @fisicamatematicasprofewilliam 11 หลายเดือนก่อน +1

    excelente

  • @wendolinmendoza517
    @wendolinmendoza517 11 หลายเดือนก่อน

    Yo creo q lo has explicado bien. De lo q no tengo certeza es del origen de la denominación 'natural'.
    Esta definición ofrece tmb una forma alternativa de calcular el número e

  • @javierc-vp6zc
    @javierc-vp6zc 11 หลายเดือนก่อน

    Muy bueno el video

  • @QueEstress
    @QueEstress 11 หลายเดือนก่อน

    Técnicamente la integral de 1/x es ln|x| . Si no ponemos ese valor absoluto los dominios de ambas funciones no coinciden puesto que lnx solo está definido para valores de x>0

  • @brunomartinez5908
    @brunomartinez5908 7 หลายเดือนก่อน

    Lo de natural es xq muchos sistemas de la vida real se modelan con leyes en donde la variación de una cantidad es proporcional a si misma y eso lleva directamente a definir el logaritmo asi

  • @ozcargarcia8144
    @ozcargarcia8144 11 หลายเดือนก่อน

    ¿Y cómo calculaban las tablas de logaritmos para efectuar cálculos numéricos?

    • @Tolyto14
      @Tolyto14 11 หลายเดือนก่อน +1

      Supongo que a través de la definición de integral definida, si querían calcular el logaritmo natural de 5 por ejemplo lo que hacían era partir el intervalo [1;5] en muchísimas partes pequeñas y multiplicar la medida de cada intervalo chiquitito por el valor que toma 1/x al reemplazar x por un valor en ese intervalo pequeño, luego suman todas las multiplicaiones. Básicamente, aproximan esa área debajo de la curva de la que habla el video a través de rectángulos muy angostos. Si buscás suma de Riemman vas a entender de lo que hablo si es que no la conocías. Si uno hace este proceso que describo pero con intervalos infinitamente pequeños obtiene lo que se conoce como integral definida.

    • @nicolascamargo8339
      @nicolascamargo8339 7 หลายเดือนก่อน

      Debe ser por aproximaciones de esa área porque, imagínese calcular la potencia (no con números naturales) del número e para obtener algún número, lo que representaría \ln(algún número}). Con números reales es imposible (hay infinitos números que probar). Sería algún algoritmo de computadora con una aproximación inicial que se puede realizar, pero cuando aparecieron las tablas, ni siquiera existían las computadoras. Por lo tanto, concluyo que las tablas se llenaron a través de la definición por integral y esto es posible porque con la definición por sumas de Riemann para llegar a la integral hay un modo de aproximar cada vez dicha potencia con un mínimo error, y además al dibujar correctamente 1/x y tener los valores para cada x es relativamente más sencillo. Además, se puede aplicar el mejor método de aproximación para la función 1/x en especial (porque no hay uno más eficaz para todas las funciones, este varía y depende de muchos factores como el decrecimiento o crecimiento en cada intervalo donde haya un punto crítico).

  • @rick4135
    @rick4135 11 หลายเดือนก่อน

    Pregunta!
    El concepto de integral se define primero como el límite de sumas de Riemman.
    Basado en tu explicación, podemos hallar una definición equivalente Ln(x) basado en el lim de suma de Riemman.
    Haciendo esto encuentra una definición de límites a ln(x) equivalente a la inversa de la definición de limite para la función exp(x).
    Me sigues?

    • @nicolascamargo8339
      @nicolascamargo8339 7 หลายเดือนก่อน

      Si esta bien el razonamiento, pero toca tener claro que la inversa de una función es devolver o despejar la variable con la que depende la función, esto hacerlo con un límite de sumatoria, como lo es la sumatoria de Riemann requeriría ingeniarse una operación inversa a calcular una sumatoria y un límite, algo bastante loco a mi parecer, pero si podría ser un tema bastante curioso como para investigarlo pero dudo que se le haya ocurrido a alguien y lo más difícil de encontrar algo nuevo es darle aplicaciones en algún campo de la matemática. No se si había confundido con calcular la inversa tipo división entre 1 y ese límite de una sumatoria por eso menciono lo anterior.

  • @sabasmoreno6705
    @sabasmoreno6705 5 หลายเดือนก่อน

    También se llama logaritmo natural porque se define naturalmente a partir de una definición de Cálculo.

  • @Dadrios
    @Dadrios 2 หลายเดือนก่อน

    Duele, mucho, escuchar neperiano tantas veces cuando es incorrecto, la forma adecuada es logaritmo natural y así se lo hago saber a mis alumnos.

  • @carlosaymerich219
    @carlosaymerich219 11 หลายเดือนก่อน +1

    👍

  • @068LAICEPS
    @068LAICEPS 11 หลายเดือนก่อน +1

    No le veo lo natural a usar integrales. Me gusta más la explicación de cómo Neper llegó a sus tablas de logaritmos.

  • @andresfelipesuarezcante9975
    @andresfelipesuarezcante9975 11 หลายเดือนก่อน

    Hay que darle los créditos al Calculus de tom apóstol... El es el que explica lo que acabas de mencionar.

  • @TheHuamantla
    @TheHuamantla 11 หลายเดือนก่อน

    Nice.

  • @Bryan1l
    @Bryan1l 11 หลายเดือนก่อน

    Interesante. Informalmente lo conozco como el logaritmo gringo (no recuerdo el por qué).

  • @pinguinauta9353
    @pinguinauta9353 11 หลายเดือนก่อน

    Me parece bellisimo el hecho de que muchas definiciones sean equivalentes

  • @Pich14.
    @Pich14. 7 หลายเดือนก่อน

    Ya pero... Qué tiene de natural?

  • @marcosteixeiradarosar5269
    @marcosteixeiradarosar5269 11 หลายเดือนก่อน

    las matrices son diferentes,no tiene nada que ver con la función logarítmica 3 años liceo se enseña los logarítmicos decimales,

  • @EltioQuesoHD
    @EltioQuesoHD 11 หลายเดือนก่อน

    por que existe el logaritmo natural, y no el logaritmo de base pi? si hubiese se llamaria logaritmo artificial?

    • @emilianodelvalle
      @emilianodelvalle 11 หลายเดือนก่อน +2

      Logaritmo circular xd

    • @EltioQuesoHD
      @EltioQuesoHD 11 หลายเดือนก่อน

      @@emilianodelvalle ai verda xd

    • @nicolascamargo8339
      @nicolascamargo8339 7 หลายเดือนก่อน +1

      Lo que sucede según mi pensamiento es que tiene algo que ver con la derivada, su derivada es la única en la cual no hay una constante diferente a 1 multiplicando a la variable dentro del logaritmo. Por la propiedad de cambio de base, la derivada de cualquier logaritmo en base cualquiera se tiene que a la variable multiplica una constante diferente a 1. Y bueno porque el 1 se considera importante, pues es porque es el único número "natural" (supongo que algo tiene que ver) que al multiplicarlo por otro se sabe el resultado con certeza y es el mismo que se multiplico por 1 con los demás números no sucede que se pueda generalizar sin necesidad de calcular la operación de multiplicación.

  • @alxndr4067
    @alxndr4067 11 หลายเดือนก่อน +2

    primer comentario askjdajsdkhd

  • @CvnDqnrU
    @CvnDqnrU 11 หลายเดือนก่อน

    "neperiano" jejeje