Distanza punto retta. Formula, esempio e dimostrazione

แชร์
ฝัง
  • เผยแพร่เมื่อ 17 ม.ค. 2025

ความคิดเห็น • 18

  • @PaoloGiovanniLimongelli
    @PaoloGiovanniLimongelli ปีที่แล้ว +7

    Bellissimo, hai delle ottime capacità divulgative, Grazie!

  • @fgrillo123
    @fgrillo123 ปีที่แล้ว +5

    Questi video sono ottimi, sia per gli argomenti che per le spiegazioni. Grazie!😉

  • @profdimateonline
    @profdimateonline ปีที่แล้ว +2

    👍

  • @guforeale556
    @guforeale556 ปีที่แล้ว +2

    Ce ne fossero professori come lei ❤

  • @armanavagyan1876
    @armanavagyan1876 7 หลายเดือนก่อน

    💪👏

  • @GaetanoDiCaprio
    @GaetanoDiCaprio ปีที่แล้ว +2

    Molto interessante! Ottima dimostrazione per il livello liceale. La dimostrazione più "elegante", però, rimane comunque quella che usa il vettore normale e il prodotto scalare

    • @stefanosega9794
      @stefanosega9794 ปีที่แล้ว +1

      Punti di vista. Per me è più elegante trovare il raggio della circonferenza centrata in P e tangente alla retta.

    • @LeucippoDaMileto-yv9on
      @LeucippoDaMileto-yv9on 8 หลายเดือนก่อน

      ​@@stefanosega9794lol io preferisco trovare le coordinate della proiezione di P e quindi attraverso il sistema. Comunque rimane una dimostrazione inutile per un liceale

  • @mariaangelachimetto7728
    @mariaangelachimetto7728 ปีที่แล้ว +2

    Dimostrazione interessante. Però la formula vale per qualsiasi retta, mentre questa dimostrazione esclude le rette parallele agli assi. Inoltre c'è un refuso, dal minuto 4:38, perché ci avvaliamo, voce del verbo avvalersi, va con una sola l.

  • @guglielmodimeglio743
    @guglielmodimeglio743 ปีที่แล้ว

    Interessante, complimenti.
    P.S.: "Avvaliamo", però. 😉

  • @massdan9919
    @massdan9919 ปีที่แล้ว

    a proposito di questa formula ho una domanda: perché sui testi si trova solo questa e non quella che fa riferimento alla forma esplicita della retta (cioè con m e q invece di a, b e c)? ragioni storiche? per generalità (comprende anche le rette parallele all'asse y)? altro?

    • @LeucippoDaMileto-yv9on
      @LeucippoDaMileto-yv9on 8 หลายเดือนก่อน

      Perché un esercizio con la forma esplicita è veramente difficile da trovare. Inoltre è più complicata e sicuramente difficile da ricordare. Se noti la maggior parte degli esercizi per convenienza richiede quella implicita. Anche la dimostrazione non è presente come lui stesso dice nel video. Essa infatti è molteplice, basti pensare che un altro modo di dimostrare è l'utilizzo di una retta passante per il punto P e P¹, il sistema per la ricerca di P¹ e successivamente la distanza tra i due punti. La dimostrazione può essere fatta anche con le similitudini ecc. diciamo che l'importante è conoscere solo la formula finale :)

  • @francescomuti7953
    @francescomuti7953 หลายเดือนก่อน

    Buongiorno.. Innanzitutto grazie per i contributi. Forse ho trovato un modo leggermente più diretto.. Non riesco, tuttavia, ad inserirne la foto

    • @ValerioPattaro
      @ValerioPattaro  หลายเดือนก่อน +1

      grazie e complimenti. Riesce a spiegarlo a parole? Le immagini non si possono inserire

    • @francescomuti7953
      @francescomuti7953 หลายเดือนก่อน

      ​@@ValerioPattaroRetta y=x+2, punto P (3,2) le cui rette normali intersecano y in R (3,7) e T(0,5,2). PH è la distanza. Similitudine tra triangoli TPR, THP PHR. Si ricava PH tramite proporzione. Non è una dimostrazione della formula, soltanto una riflessione in più.. Spero di un qualche interesse. Grazie ancora

    • @francescomuti7953
      @francescomuti7953 หลายเดือนก่อน

      ​@@ValerioPattarosi può anche applicare il teorema di euclide al triangolo TPR, ricavando TH e TR

    • @francescomuti7953
      @francescomuti7953 หลายเดือนก่อน

      Una volta ricavato TH lo si può porre come radice quadrata della differenza tra quadrato dell'ipotenusa e quadrato del cateto, tutto in funzione di Xp. Così dovrebbe venire, spero di non aver fatto un doppione della sua già esaustiva dimostrazione

  • @albertopizzari7543
    @albertopizzari7543 ปีที่แล้ว

    In effetti non mi è mai capitato di vederla su alcun testo!