How process mining improves the things you do not see | Wil van der Aalst | TEDxRWTHAachen

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 ธ.ค. 2024

ความคิดเห็น •

  • @TheKavindraM
    @TheKavindraM 2 หลายเดือนก่อน +1

    Disappointed by manual process maps
    Disappointed with companies spending on process mapping softwares
    Disappointed with process mapping in PowerPoint.
    Shows a PowerPoint and tells nothing except Celonis (a software for BPMS).
    Going to your channel and watching all the videos. Glad to hear from you Prof.

  • @JamesDebbah10
    @JamesDebbah10 ปีที่แล้ว +5

    Excellent talk. Thanks prof Wil van der Aalst.

  • @DidarShams8240
    @DidarShams8240 ปีที่แล้ว +2

    Amazing speech!

  • @moesmael
    @moesmael ปีที่แล้ว +2

    Excellent explaining

  • @semartem
    @semartem 10 หลายเดือนก่อน +1

    Thank you for the video

  • @andreasbott4753
    @andreasbott4753 ปีที่แล้ว +1

    good explanation!

  • @oksanazaitseva943
    @oksanazaitseva943 7 หลายเดือนก่อน

    So what is difference process Mining from Process research? Why it is called "mining"?

    • @johannesweidmann2539
      @johannesweidmann2539 7 หลายเดือนก่อน +5

      It is called mining because it is not just about process analysis but instead about mining these hidden processes from event data.

  • @JoeGreen03
    @JoeGreen03 7 หลายเดือนก่อน

    🎉

  • @WhyTho-vg2cd
    @WhyTho-vg2cd ปีที่แล้ว +6

    "Data goes in, and you learn something on Data... so it's machine learning" huh? isn't machine learning about teaching a machine to learn? Why is it machine learning if only I am learning something based on what a fixed algorithm produced if the algorithm/machine itself didn't learn anything?
    Other than that - great talk!

    • @fgjhdhwrtwtrh
      @fgjhdhwrtwtrh ปีที่แล้ว +2

      He's saying process mining is machine learning in a colloquial sense; something (insights) are being learned from data with a machine. You are right that this isn't the proper scientific definition, which is that an algorithm is learned from data.

    • @wilvdaalst
      @wilvdaalst 10 หลายเดือนก่อน +2

      It depends on how you define machine learning. Using process discovery, you learn a process model (for example, a Petri net). Such a model can be seen as a function describing a possibly infinite set of process executions (also involving concurrency). One can see this as a classifier for behavior, just like a neural network distinguishes between dog and cat pictures. Process mining is also used to predict the remaining processing time of running cases, predict bottlenecks, predict deviations, etc. There is more to ML/AI/DS than just neural networks and gradient descent and also these techniques use a fixed algorithm :-)

    • @WhyTho-vg2cd
      @WhyTho-vg2cd 2 หลายเดือนก่อน

      ​@@wilvdaalst good point and thank you for taking time to answer. And learning the relevant Information included in the process Model (e.g. case-Attribute time gates in a Petri Model) would be learned how? Wouldn't gradient descent somehow come into the equation again?

  • @denvermartin9656
    @denvermartin9656 11 หลายเดือนก่อน

    Too generic

    • @VoyivodaFTW1
      @VoyivodaFTW1 10 หลายเดือนก่อน

      That’s the point. You have to tailor the skill to your use case. It’s like doing a study to break down all the interactions and plug in solutions ad-hoc