Multiplying Square Root of Negative Numbers

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 พ.ย. 2024

ความคิดเห็น • 265

  • @smichels5117
    @smichels5117 6 หลายเดือนก่อน +2

    Excellent, sir! I find your videos mentally stimulating and fascinating. Please, continue. Thank you.

  • @NINJA9801
    @NINJA9801 10 หลายเดือนก่อน +27

    You brought me a couple of years back to my high school math studies !
    I really hope you continue to inspire young people to understand, like and enjoy the beauty of mathematics !

    • @kaasmeester5903
      @kaasmeester5903 10 หลายเดือนก่อน +3

      Nice... we never got imaginary numbers in high school. I learned about them in college, but as an EE minor we called it j rather than i so as not to confuse it with the symbol for current.

    • @nadavhoresh6734
      @nadavhoresh6734 10 หลายเดือนก่อน +1

      More of a convention trick, less math.

    • @PotentialGrim
      @PotentialGrim 10 หลายเดือนก่อน

      @@kaasmeester5903lol I am doing that now

  • @user-jw8bq1iq1j
    @user-jw8bq1iq1j 8 หลายเดือนก่อน

    Wow. Thank you so much for your videos! I have recently been watching them late at night for fun lol! Today I taught my daughter some of your methods, in preparation for the SAT. She completely understood it all, and then solved some problems correctly. Again thank you 🙏

  • @80lala08
    @80lala08 10 หลายเดือนก่อน +21

    Note: i^2 isnt equal to +1 because squaring a root just gives you the number without the radical

    • @warblerab2955
      @warblerab2955 8 หลายเดือนก่อน

      of course i^2 isn't equal to +1, it is equal to -1.

    • @80lala08
      @80lala08 8 หลายเดือนก่อน

      @@warblerab2955 yeah i just wrote it for me, feel free to ignore it

  • @moonlightmochi884
    @moonlightmochi884 7 หลายเดือนก่อน

    you helo bringing my math confidence back after going from a straight A student to being bullied and sick I could no longer perform in school, thank you for helping me find my old self again❤ your videos are always very clear and informative, appreciate it

  • @jan-willemreens9010
    @jan-willemreens9010 11 หลายเดือนก่อน +32

    ... Good day to you sir, When encountering for instance SQRT( - 9) in a calculation, to avoid possible problems in the Complex world, I like to apply i^2 = - 1 immediately, so SQRT( - 9) = SQRT(9 * i^2) = SQRT(3^2 * i^2) = 3 * i, personally my way of avoiding errors ... thanking you for as always clear and instructive presentations and last but not least math efforts ... best regards, Jan-W

    • @atussentinel
      @atussentinel 10 หลายเดือนก่อน +5

      the problem is (-i)^2=-1 as well, why not use -i?
      there is no i > (-i) or i > 0 such thing to help you define a "principle root" in the complex domain

    • @d-8664
      @d-8664 10 หลายเดือนก่อน

      Dat is hetzelfde als wat hij doet, duh.

    • @carultch
      @carultch 10 หลายเดือนก่อน

      ​@@atussentinelBy convention, we use +i to keep it simple, unless it is otherwise specified that we want all possible roots. There is a convention to select principal roots in the complex world, which is the following:
      #1: if there is a positive real root, the positive real root is the principal root
      #2: if there is no positive real root, but there is a negative real root, the negative real root is the principal root
      #3: if there are no real roots, the complex root that is closest to the positive real axis is considered the principal root
      #4: if #3 is inconclusive because the complex roots in question are a conjugate pair, the root with a positive imaginary component is considered the principal root.
      Examples:
      #1: principal square root of 25 is +5
      #2: principal cube root of (-27) is -2
      #3: principal square root of (-18*i), is 3 - 3*i
      #4: principal 4th root of (-64), is 2 + 2*i

    • @HyperFocusMarshmallow
      @HyperFocusMarshmallow 10 หลายเดือนก่อน

      @@atussentinel You can say something like, pick the root in the complex upper half plane (cutting out the negative real axis).
      Doesn’t always do what you want, but it’s often a decent default.

  • @goaheadskinit
    @goaheadskinit 9 หลายเดือนก่อน

    Appreciate all your videos. I enjoy solving mental math Problems.

  • @igorbigchlen5812
    @igorbigchlen5812 10 หลายเดือนก่อน +2

    Thank you. you are a star. Please keep on I enjoy watching your videos 😊

  • @waltdill927
    @waltdill927 10 หลายเดือนก่อน +1

    One simply gives the 6 answer and knows to "naively" add the negative sign anyway.
    But the step-by-step is to show the answer by the justification of the imaginary and to remind that it is not permitted to attach the negative sign except as "outside the sign".
    Given: It is not the case that negative roots have solutions AND roots have positive and only positive sign.
    QED: It is the case that negative roots have solutions with negative sign as demonstrated.

  • @Snownam227
    @Snownam227 8 หลายเดือนก่อน

    relearning basic- math rules I learned a long time ago is soo cool

  • @KarlSnyder-jh9ic
    @KarlSnyder-jh9ic 6 หลายเดือนก่อน

    LOL. I love it! You are the man.

  • @jons9721
    @jons9721 10 หลายเดือนก่อน +3

    Wow that was a very complex explanation for something very simple bar the concept of imaginary numbers. Exponetial operations take priority over multiplication (weird American use of . for multiplication rather than x but I will let you of that).
    Square root of -9 is 3i, square root of -4 is 2i. 3i x 2i = 6 x i^2 = -6

    • @joeltimonen8268
      @joeltimonen8268 10 หลายเดือนก่อน

      When it comes to multiplication I've seen the "center dot" notation far more often than the (slightly smaller) x, both during lectures etc. in my studies (in Europe) and in text books. I imagine the reason is to avoid confusion with "x the variable".

    • @jons9721
      @jons9721 10 หลายเดือนก่อน

      True it can avoid confusion between x's (tend to use italic to avoid this) but it causes confusion with the decimal point@@joeltimonen8268

    • @DemanaJaire
      @DemanaJaire 10 หลายเดือนก่อน

      I'm European, and we've never used × for multiplication. We've always been using •

  • @wiggles7976
    @wiggles7976 10 หลายเดือนก่อน +3

    Without any rigor, I can say why this makes sense. We'd expect sqrt(-1)sqrt(-1) = -1, and we would want to extend that in general. We would want sqrt(-9)(sqrt(-9) = -9 (where 9 plays the role of 1), so whatever sqrt(-9) is, multiplying it by itself should give -9. The number 3sqrt(-1) seems like a good candidate for sqrt(-9). If we have two different numbers in the root, such as sqrt(-2)sqrt(-3), then again we want the answer to be the square root of the product of the magnitudes of the numbers under the root, multiplied by -1, or in this case sqrt(-2)sqrt(-3) = -sqrt(2*3) = -sqrt(6).

  • @memsuniverse
    @memsuniverse 11 หลายเดือนก่อน +9

    best tutor ever thank you

    • @mrhtutoring
      @mrhtutoring  11 หลายเดือนก่อน +5

      Glad you think so!

  • @davidbrisbane7206
    @davidbrisbane7206 10 หลายเดือนก่อน +9

    √(-9) = 3i, and √(-4i) = 2i, where i = √(-1), then 3i * 2i = 6i² = -6..
    Actually, if we plot 3i and 2i on an Argrand diagram, we see these numbers have a magnitude of 3 and 2 respectively and both make a 90° angle anti-clockwise on the x-axis (real number axis). So they are on the y-axis (imaginary axis).
    Now when we multiple these two complex numbers together on and Argrand diagram, then the resulting number has a magnitude 2*3 = 6 and the angle subtebded to the real number axis is 90° + 90° = 180°
    The complex number (6, 180°) on the Argrand diagram corresponds to -6.

    • @rubiks6
      @rubiks6 10 หลายเดือนก่อน +2

      Actually, √(-9) = 3i *OR* √(-9) = -3i. You can work out the rest of the thought process.

    • @ToTheWolves
      @ToTheWolves 9 หลายเดือนก่อน +1

      That’s how I did it in my head too

  • @santhoshkumar.2012
    @santhoshkumar.2012 11 หลายเดือนก่อน +9

    Thanks sir

    • @reigen-
      @reigen- 11 หลายเดือนก่อน +1

      i liked your comment

  • @warblerab2955
    @warblerab2955 8 หลายเดือนก่อน

    If you ask me, this means when the rule sqrt(a) * sqrt(b) = sqrt(a * b) is taught, it should be taught that it is true unless both a and b are negative.

  • @HJones-pi5bs
    @HJones-pi5bs 10 หลายเดือนก่อน +4

    Thank you very much for your videos! As we get older including Math in our daily routine is great for our brain health. I will keep watching! Thanks again!:-)

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน +1

      Thank you for watching.

  • @thomaspraschl7521
    @thomaspraschl7521 10 หลายเดือนก่อน

    Beancounters everywhere...

  • @jk3089
    @jk3089 10 หลายเดือนก่อน

    Remember. Two minus values under square roots like√(−1)×√(−1) when multiply will result in minus. Fout times multiplication like √(−1)×√(−9)×√(−1)×√(−9) will result in positive.

  • @davidryanbonelli9242
    @davidryanbonelli9242 9 หลายเดือนก่อน

    Geometric Algebra FTW. + And - are just vector directions.

  • @gazfarouk7430
    @gazfarouk7430 7 หลายเดือนก่อน

    Thanks. Very nice work.

  • @annieyue9184
    @annieyue9184 7 หลายเดือนก่อน

    I wish you were my math teacher!

  • @billcook4768
    @billcook4768 9 หลายเดือนก่อน +1

    I like the way you use sqr(ab)=sqr(a)sqr(b) to show that sqr(-9)sqr(-4) does not equal sqr(-9x-4)

  • @m.h.6470
    @m.h.6470 10 หลายเดือนก่อน

    (correct) Solution:
    since √ of negative numbers is not defined, you have to split it up:
    √-9 * √-4
    = √(-1 * 9) * √(-1 * 4)
    = √-1 * √9 * √-1 * √4
    = (√-1)² * 3 * 2
    Now, the special constant "i" is defined as i² = -1, so that i = √-1. Therefore:
    = i² * 6
    = -1 * 6
    = -6

    • @m.h.6470
      @m.h.6470 10 หลายเดือนก่อน

      Addition after the video:
      The error, that √36 = ±6 comes from the believe, that x² = 36 results in x = ±6, which is not directly true, because taking the √ or x² does not equal x, but |x| (meaning the absolute/positive value of x).
      Therefore:
      x² = 36 |√
      |x| = 6
      This now has to be evaluated for x ≥ 0 and x < 0.
      For x ≥ 0, it just becomes x = 6
      For x < 0, it has to becomes -x = 6, because x is negative, but the result is positive. Therefore we have to negate x to make it correct. Now we just multiply both sides with -1 and get x = -6
      As a result, we now have x = 6 and x = -6, which can be written as x = ±6.
      Most teacher don't really explain this process and just skip to "x² = 36, therefore x = ±6", which is technically correct, but confusing to the students.
      Because they skip this process, they also almost never teach the fact, that √x² ≠ x but instead it is √x² = |x|

  • @HAGARCIA
    @HAGARCIA 10 หลายเดือนก่อน +3

    Obrigado pelos esclarecimentos de multiplicação de números negativos, na radiciação !

  • @b07_ashishsuradkar49
    @b07_ashishsuradkar49 11 หลายเดือนก่อน +5

    Wow.

  • @antonello123able
    @antonello123able 2 หลายเดือนก่อน

    Sqrt(-1)= +/-i ( nonzero complex numbers always have two complex square roots).

    • @mrhtutoring
      @mrhtutoring  2 หลายเดือนก่อน

      But when we use the √ symbol, we only use the principal root

  • @Adam_Lyskawa
    @Adam_Lyskawa 10 หลายเดือนก่อน +1

    First things first - look at the domain. We can't ignore the complex domain here. If we don't - then we immediately see that -6 != 6.

    • @DemanaJaire
      @DemanaJaire 10 หลายเดือนก่อน

      The domain of what? This is not a formula with unknown numbers. You want to define the domain of an equation with all numbers known? I'd love to see that.

    • @Adam_Lyskawa
      @Adam_Lyskawa 10 หลายเดือนก่อน

      @@DemanaJaire This is a formula containing functions. We can think of the square root as a function. For specific part of the domain it takes specific part of the possible values. My math professor used to say it doesn't matter that much if we know or don't know the numbers. But I forgot the exact context, it was a long time ago in another life.

  • @filipeferreira5085
    @filipeferreira5085 10 หลายเดือนก่อน

    If we have two numbers x and y, such that y is the square root of x, then
    y = sqrt(x)
    y = sqrt(x * 1)
    y = sqrt(x * (-1 * -1))
    y = sqrt(x) * sqrt(-1) * sqrt(-1)
    y = sqrt(x) * i * i
    y = sqrt(x) * i^2
    y = sqrt(x) * (-1)
    y = -sqrt(x)
    y = -y
    ?

  • @sail2byzantium
    @sail2byzantium 10 หลายเดือนก่อน +8

    Hi Mr. H,
    From your comment on the sq. root of 36 NOT being both +6 and -6, but just the former when we have a radical sign (@ c. 2:34). Okay. Could you clarify when we would have both a positive and negative answer to a square root? As I recall this seems to happen with quadratic equations esp. when using the quadratic formula (for example--and even if you have to check the correctness of both answers).
    So, I'm a bit confused on when we have just a positive answer to a square root vs. both positive and negative answers. Is there a rule here? Thanks!

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน +8

      When you take the square root of both sides of an equation, you add the ±.
      For example, x²=4
      x=±2.

    • @sail2byzantium
      @sail2byzantium 10 หลายเดือนก่อน +2

      @@mrhtutoring
      This helps.
      Thank you! Thank you!

    • @akamajoseph9415
      @akamajoseph9415 10 หลายเดือนก่อน +5

      I'm not yet convinced.

    • @jflamingo26
      @jflamingo26 10 หลายเดือนก่อน

      ​@@akamajoseph9415 hey, hope i can help. in general √ refers to the positive square root of a number. eg. √4 = 2. when we solve the equation x² = 4, there are two numbers that solve the equation, the positive square root and the negative square root. the positive one we write as √4 as mentioned before, and the negative one is -√4 (negative of the positive root makes the negative root). we often write both of these two separate solutions together with one sign, putting ±√4 = ±2. so, √4 refers to the positive root of 4, and ±√4 refers to both the positive root of 4, AND the negative root of 4, which come from solving the equation x² = 4

    • @jflamingo26
      @jflamingo26 10 หลายเดือนก่อน +3

      in a nutshell, √x is the positive number that multiplies by itself to make x, but when solving equations, we don't only want the positive number, we also want the negative one, and hence we also have to consider -√x as a solution, giving our ±√x.

  • @carlotlouis6331
    @carlotlouis6331 11 หลายเดือนก่อน +23

    The BEST, You're not Mr H : Your title should be :Dr H Tutoring.

    • @stevenle176
      @stevenle176 10 หลายเดือนก่อน

      I Agree

  • @jwilson4163
    @jwilson4163 2 หลายเดือนก่อน

    👏👏👏👏

  • @poporopo007
    @poporopo007 8 หลายเดือนก่อน

    thanks. I'm mastering it.

  • @DanielDTUBWeinberger
    @DanielDTUBWeinberger 10 หลายเดือนก่อน

    Before watching video, I keep getting the answer is plus or minus six depending on how tackle the problem, thefore, it not being sqrt(36) is correct.
    I'll now watch video.
    After watching I'm assuming we cannot do the sqrt(a)•sqrt(b)=sqrt(a•b) even after converting to sqrt(9i^2) and sqrt(4i^2) since by order of operations, we would normally have to do exponents first (sqrt is same as 1/2 power) and since that would still make 3i and 2i, we cannot get 6 as part if the final answer. It kind of makes sense but is kind of confusing.

  • @justinmplayz8809
    @justinmplayz8809 10 หลายเดือนก่อน +1

    idk if this works but what I do is stack the negatives
    sqrt(-9) * sqrt(-4) = sqrt(-^2 36) = -6

  • @o0QuAdSh0t0o
    @o0QuAdSh0t0o 10 หลายเดือนก่อน

    Invented by Leonhard Euler, Swiss Mathematician

  • @subhasishghosh5243
    @subhasishghosh5243 8 หลายเดือนก่อน

    I agree!

  • @paulwang3315
    @paulwang3315 10 หลายเดือนก่อน +1

    The question is how do we explain that sqrt(1) * sqrt(1) = sqrt(1 * 1), but sqrt(-1) * sqrt(-1) != sqrt(-1 * -1). Is it always right that sqrt(m) * sqrt(n) = sqrt(m * n)?

    • @RealMesaMike
      @RealMesaMike 8 หลายเดือนก่อน

      The property that sqrt(m) * sqrt(n) = sqrt(m * n) holds only when at least one of m and n is non-negative. So, we have to be careful when it's possible for both numbers to be negative.

  • @zooooooooo78
    @zooooooooo78 11 หลายเดือนก่อน +5

    Sir your biceps 💪

    • @reigen-
      @reigen- 11 หลายเดือนก่อน +1

      i liked ur comment

  • @atussentinel
    @atussentinel 10 หลายเดือนก่อน +1

    is there a "principal root" for sqrt of negative numbers (or convention)? I'm not sure. If there is not, then the notation of sqrt(-9) is ambiguous. To me it's very weird to define a "principal root" for complex numbers, that is, sqrt(-9) is always +/-3i, then you can definitely get 6 as a second valid answer.
    I'll accept the answer is "undefined/not exist" as taking the sqrt of negative number is undefined in real domain. It's better than using the methods defined with real numbers and directly use it to solve a complex number problem.

    • @Engy_Wuck
      @Engy_Wuck 10 หลายเดือนก่อน +2

      The principal root of -9 does not exist. What exists is a change to the complex numbers and then calculation -9 as 9i² = 3²i²
      Also √(-9) is only 3i, not -3i
      Only in equations like x² = -9 √(x²) = √(-9) is "the result" x = ±3i - which comes from the x. The solution of √(x²) = √(-9) is |x| = 3i, and we don't want absolute values, so we write x = ±3i

    • @carultch
      @carultch 10 หลายเดือนก่อน

      The answer is yes. There is a convention for principal roots of negative numbers, and for complex numbers in general.
      Priority #1: positive real roots
      Priority #2: negative real roots
      Priority #3: complex root closest to the positive real axis
      Priority #4, if priority #3 produces a complex conjugate pair of roots, the one with a positive imaginary part is the one that is the principal root.

  • @snatcc
    @snatcc 11 หลายเดือนก่อน +1

    I whent “BUT i^2 IS 1”

  • @francisc909
    @francisc909 10 หลายเดือนก่อน

    Thanks!

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน +1

      Wow. Thank you for your support!
      I appreciate it very much. 🙏

  • @vallodholm
    @vallodholm 10 หลายเดือนก่อน

    I would say the imaginary number "i" was discovered rather than invented. An important distinction.

    • @DemanaJaire
      @DemanaJaire 10 หลายเดือนก่อน

      Imaginary number is a concept, and concepts are inventions, not discoveries.

  • @Win-Tokugawa
    @Win-Tokugawa 11 หลายเดือนก่อน +1

    You saved my life. My exam is tomorrow lol.

    • @mrhtutoring
      @mrhtutoring  11 หลายเดือนก่อน +2

      Good luck in your exam. 👍

  • @alvsar2492
    @alvsar2492 8 หลายเดือนก่อน

    Only those who love numbers

  • @Oseady
    @Oseady 11 หลายเดือนก่อน +2

    The direct answer will be -6 because the I

  • @kpi6438
    @kpi6438 10 หลายเดือนก่อน

    Very interesting and useful, but not entirely accurate. If we discuss roots of negative numbers, we must take into account ambiguity in the complex plane, so the answer is 6*EXP( i*m *π), where "m" - is any integer.

  • @อืซี่โมบาย-ฉ9ษ
    @อืซี่โมบาย-ฉ9ษ 10 หลายเดือนก่อน

    ขอบคุณครับ

  • @colinslant
    @colinslant 10 หลายเดือนก่อน

    The trouble with this explanation is that you rely on sqrt(ab)=sqrt(a)*sqrt(b) to show that sqrt(-9)=sqrt(-1)*sqrt(9) and everything that follows, but then if sqrt(a)*sqrt(b)=sqrt(ab) it also follows that sqrt(-9)*sqrt(-4)=sqrt(-9*-4)=sqrt(+36), which isn't true. It's no wonder students get confused.

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน

      Square root of negative numbers have different properties as they're imaginary.
      Hence, different rules

    • @colinslant
      @colinslant 10 หลายเดือนก่อน

      @@mrhtutoring Yes, exactly. So you shouldn't be using sqrt(ab)=sqrt(a)*sqrt(b) to give sqrt(-9)=sqrt(-1)*sqrt(9) because that formula only applies when a and b are positive. Instead make clear that sqrt(-x)=sqrt(x)i.

  • @herobrine8763og
    @herobrine8763og 10 หลายเดือนก่อน

    “Square roots of negatives do not exist”

    • @thenetsurferboy
      @thenetsurferboy 10 หลายเดือนก่อน

      Yes they do
      Complex number theory
      Root -1 = i

    • @PYTHAGORAS101
      @PYTHAGORAS101 7 หลายเดือนก่อน

      You are correct and complex so-called numbers are a fraudulent abomination.

  • @MithileshMithu-ql5wr
    @MithileshMithu-ql5wr 11 หลายเดือนก่อน +3

    Superb sir 🎉🎉🎉

  • @f.r.y5857
    @f.r.y5857 8 หลายเดือนก่อน

    √a×√b = √(ab), with a,b ≥ 0

  • @nguyenhuyduc9151
    @nguyenhuyduc9151 10 หลายเดือนก่อน

    My math experience stop at square(x) with x>=0

  • @ryans4699
    @ryans4699 8 หลายเดือนก่อน

    why we can't use sqrt(a)*sqrt(b) = sqrt(a*b) generally? While the converse, sqrt(a*b) = sqrt(a)*sqrt(b) is true?

    • @mrhtutoring
      @mrhtutoring  8 หลายเดือนก่อน +1

      √negative is an imaginary number.
      Imaginary numbers work differently.

  • @YTRusViewer
    @YTRusViewer 10 หลายเดือนก่อน +3

    Can I use the same logic as follows?
    1) sqrt(-9) = sqrt(9/-1) = 3 / i = -3i
    2) sqrt(-9) = sqrt(-1*9) = +3i
    Nice proof that 0=1 :)

    • @atussentinel
      @atussentinel 10 หลายเดือนก่อน

      sqrt(-9) is ambiguous. It's undefined in real numbers but in complex numbers it's always 3i/-3i. Throwing one away (like the thing did in the vid) looks weird to me.

    • @YTRusViewer
      @YTRusViewer 10 หลายเดือนก่อน

      @@atussentinel Yeap, to work with a complex function as if it were a real function, you'd first make it unambiguous. But it does not explain what you cannot do and which of 1) and 2) is wrong

    • @RealMesaMike
      @RealMesaMike 10 หลายเดือนก่อน

      @@YTRusViewer #1 is wrong
      You got 3/i by converting -9 to 9/-1, then attempting to take sqrt(9/-1), and then using properties to make that into sqrt(9)/sqrt(-1).
      But, the property that sqrt(a/b) = sqrt(a) / sqrt(b) doesn't hold when b is a negative number, because it results in the wrong (non-principal) root.

    • @YTRusViewer
      @YTRusViewer 10 หลายเดือนก่อน

      @@RealMesaMike so sqrt(-9)/sqrt(1) is correct while sqrt(9)/sqrt(-1) is not. Though the wrong root is in the numerator sqrt(-9), isn't it? :) I just want to understand in a simple manner where the error comes up

    • @RealMesaMike
      @RealMesaMike 10 หลายเดือนก่อน

      @@YTRusViewer
      sqrt(a/b) means that you have to resolve a/b first, then take the square root of the result.
      This means the convenient property sqrt(a/b) = sqrt(a) / sqrt(b) doesn't necessarily hold when negative numbers are involved in the denominator, because you get a different answer than if you resolved a/b first then took the square root of that result.

  • @0011peace
    @0011peace 10 หลายเดือนก่อน

    you can't totally ignor the negative root in both navigation and elctronic engineering direction maters not always but in many cases

  • @justwanderin847
    @justwanderin847 10 หลายเดือนก่อน +1

    You just made that up ! ha

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน +1

      I hope you're kidding.

    • @justwanderin847
      @justwanderin847 10 หลายเดือนก่อน

      Yes sir ! :) @@mrhtutoring

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน

      😆

  • @ThomasHaberkorn
    @ThomasHaberkorn 9 หลายเดือนก่อน

    what reasoning is behind therule that sqrt(36) is only +6 ?

    • @mrhtutoring
      @mrhtutoring  9 หลายเดือนก่อน +3

      It's a convention that the mathematicians agreed upon.
      If we use both the positive and the negative roots, it would be a mess.

  • @거미남자_spidy
    @거미남자_spidy 10 หลายเดือนก่อน

    sqrt("-"9) and sqrt("-"4) are mean 3i and 2i so solution is "-6" Not 6

  • @georgelancaster2989
    @georgelancaster2989 10 หลายเดือนก่อน +66

    I don't understand how you can go into the complex plane and then say the answer isn't both 6 and negative 6.

    • @legoaggelos2722
      @legoaggelos2722 10 หลายเดือนก่อน +9

      Why? He is right.

    • @balukumovies
      @balukumovies 10 หลายเดือนก่อน +25

      Because you still take the principal square root

    • @Theooolone
      @Theooolone 10 หลายเดือนก่อน +14

      the square root symbol only represents the principled result, same with x^0.5, its why the plus-minus sign is in the quadratic formula
      i don’t think there’s any good notation for exponentials that return all results unfortunately, if anyone does know then i’d like to know

    • @carultch
      @carultch 10 หลายเดือนก่อน +6

      @@Theooolone
      "i don’t think there’s any good notation for exponentials that return all results unfortunately, if anyone does know then i’d like to know"
      There is. As an example, to indicate that we want all 3 solutions to cbrt(8), we can write it as:
      e^((ln(8) + 2*pi*k)/3), where k is any integer
      With k=0, we get e^(ln(8)/3), which is the principal root +2
      With k=1, we get -1 + sqrt(3)*i
      With k=2, we get -1 - sqrt(3)*i
      And when k passes 3, we continuously repeat this cycle, where k is reduced to its remainder when dividing by 3.

    • @Theooolone
      @Theooolone 10 หลายเดือนก่อน +4

      @@carultch That's so awesome! Of course it would be something with e and ln, thanks for letting me know!

  • @rodrodrigues5402
    @rodrodrigues5402 10 หลายเดือนก่อน

    Thank you for handling the radical properly.

    • @rodrodrigues5402
      @rodrodrigues5402 10 หลายเดือนก่อน

      Sorry, that was posted to the wrong video lesson by a different person

    • @rodrodrigues5402
      @rodrodrigues5402 10 หลายเดือนก่อน

      I wish i could edit or delete. The person writing on black background is indeed. The one on a green background routinely mishandles the radical.

  • @AB-et6nj
    @AB-et6nj 8 หลายเดือนก่อน

    Why can't you raise both sides to the second power to get rid of the square root?

    • @mrhtutoring
      @mrhtutoring  8 หลายเดือนก่อน

      The given problem isn't an equation.
      We are simplifying the expression on the left.

    • @AB-et6nj
      @AB-et6nj 8 หลายเดือนก่อน

      @@mrhtutoring I see, thanks

  • @jim2376
    @jim2376 10 หลายเดือนก่อน

    👍

  • @alexbarac
    @alexbarac 10 หลายเดือนก่อน +2

    If you can't do sqrt(-4)*sqrt(-9)=sqrt[(-4)*(-9)] because those numbers do not exist, then why can you do sqrt[(-1)*9]=sqrt(-1)*sqrt(9) (so the reverse), since sqrt(-1) also does not exist?

    • @alexbork4250
      @alexbork4250 10 หลายเดือนก่อน +3

      when he says "doesn't exist" he just means "it isn't real number"

    • @alexbarac
      @alexbarac 10 หลายเดือนก่อน

      @@alexbork4250Sure, fair enough, but in my mind the same applies though. If you can't multiply square roots of negative numbers according to what he says, why would the reciprocal be allowed (albeit one of them is indeed a real number)?

    • @carultch
      @carultch 10 หลายเดือนก่อน

      @@alexbarac The reason is that the square root of -1 is +i, by definition and by convention it is positive i. The square root sign in general, tells you to produce the principal root. There is a convention for the principal square root, where for positive real numbers, it is a positive real number, and for negative real numbers, it is the positive imaginary number.
      The principal root convention in general is:
      Priority #1: is there a positive real root? Then it's the positive real root.
      Priority #2: is there a negative real root? Then it's the negative real root.
      Priority #3: is there single root closest to the positive real axis? Then that's the principal root.
      Priority #4: is there complex conjugate pair of roots closest to the positive real axis? Then the one with a positive imaginary part is the principal root.

    • @ericvenn4289
      @ericvenn4289 10 หลายเดือนก่อน +1

      Consider the polar form. Where "i" represents a 90 degree anticlockwise phase shift. Multiplication of two 90 degree phase shifts results in a rotation of 180 degrees (-1). Multiply the real numbers 3 x 2=6. The combined result -1x6=-6.
      Without the imaginary number "i", (or "j" in engineering), there would not be algebraic solutions to many important mathematical and engineering issues.

  • @kwikbit
    @kwikbit 10 หลายเดือนก่อน

    Could you clarify (please!) why we have the +- in front of the discriminant part of the quadratic formula ?

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน

      When solving an equation, we add +-.

    • @GiovannaIwishyou
      @GiovannaIwishyou 10 หลายเดือนก่อน +1

      In that case we do expect two (possibly identical) solutions.

    • @DemanaJaire
      @DemanaJaire 10 หลายเดือนก่อน

      Example:
      x^2 = 4
      sqrt(x^2) = sqrt(2^2)
      |x| = 2
      x = 2 or x = -2
      because both 2^2 and (-2)^2 equal 4, and you want to find all possible solutions, not just the convenient one.
      In case of sqrt(36) you don't need it. Sure, you can do sqrt(36) = sqrt(6^2) = |6| = 6, but it's redundant, because |6| can only equal 6. There are no multiple solutions.

  • @yangwekesa3818
    @yangwekesa3818 10 หลายเดือนก่อน

    Where in life do we apply
    this?

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน

      You'd need to learn this to go to college.

    • @carultch
      @carultch 8 หลายเดือนก่อน +1

      Complex numbers are used in electrical engineering, to expand the concept of resistance, to also cover capacitors and inductors with the more general concept of impedance. The real part of impedance is the resistance, indicating that energy leaves the electrical domain, while the imaginary part is called reactance, which refers to energy that is stored and released later in the cycle.
      This allows you to keep track of impedance for all three of these kinds of components, and go through the same setup as you would if they were all just resistors. When you use the impedance to solve for the current or voltage of interest, the magnitude corresponds to the amplitude of the wave, and the angle of the voltage or current phasor (i.e. phase vector) corresponds to the phase shift from the source's waveform.

  • @wildpett
    @wildpett 8 หลายเดือนก่อน

    Why coulnd you write sqrt(-9) * sqrt(-4) as sqrt(-4*-9) = sqrt(9*4) = sqrt(36)?

    • @mrhtutoring
      @mrhtutoring  8 หลายเดือนก่อน

      Different rule is applied when you deal with sqrt(negative number)

  • @udaykumarmys
    @udaykumarmys 10 หลายเดือนก่อน

    May I know which chalk piece holder are you using ?

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน

      I use the Hagoromo chalk.

    • @udaykumarmys
      @udaykumarmys 10 หลายเดือนก่อน

      @@mrhtutoringthank you

  • @richardcommins4926
    @richardcommins4926 10 หลายเดือนก่อน

    If a and b are real variables and from the formula sqrt(a) * sqrt(b) = sqrt(a*b) then if a = -4 and b = --9 then a*b = +36 and the sqrt(36) = 6. OK and the sqrt(-4) = sqrt(-1) * sqrt(4) which is 2i and sqrt(-1) * sqrt(9) is 3i and 2i * 3i = 6 * i^2 which equals 6 * -1 or -6. So why the two answers? What logic was violated in the first proof? If I say that a and b are real variables that means the they can be positive or negative. I think you are playing here with the order of precedence like in PEMDAS (please excuse my dear aunt sally) or parenthesis then exponents, multiplication, division then add and subtract. Where you are not clear here is that a square root symbol is really a to the 1/2 power exponent (a^1/2) and is an exponentiation and must be done first by convention from the order of operations. Yes we all know that -4 is really -1 * 4 and -9 is really -1 * 9. So by the order of operations you must exponentiate the product (a*b)^1/2 before you multiply.

  • @Aulkk
    @Aulkk 11 หลายเดือนก่อน

    Multiply square root of
    negative number,
    Don’t directly combine it,
    First u should take the
    comment factor (i) , let
    it become square root of
    positive numbers and
    then combine it.😅😅

  • @luxuryridetimes
    @luxuryridetimes หลายเดือนก่อน

    In your video ( 10 = -10 ) you tell the logic which is totally inverse of this 🤔🤔🤔

  • @cyruschang1904
    @cyruschang1904 10 หลายเดือนก่อน

    ✓(-9) x ✓(-4) = 3i x 2i = -6 = -✓36

  • @clue0001
    @clue0001 11 หลายเดือนก่อน +2

    Nice. 👍🏻

  • @MFM230
    @MFM230 10 หลายเดือนก่อน

    I didn't do all the steps and Mr. H did, but I arrived at the correct answer, -6, knowing about imaginary numbers. Thank you, Mr H!

  • @tharock220
    @tharock220 10 หลายเดือนก่อน +2

    It violates the order of operations. sqrt(9)*sqrt(4)=sqrt(36) does as well, but the positives make it behave nicely.

  • @chinchang5117
    @chinchang5117 11 หลายเดือนก่อน +4

    SQRT(-1) times SQRT(-1) equal to -1 straightaway. There is no need to change it to i and then i times i equal to -1.

    • @mrhtutoring
      @mrhtutoring  11 หลายเดือนก่อน +2

      I see. How about sqrt(2) times sqrt(-1)?

    • @chinchang5117
      @chinchang5117 11 หลายเดือนก่อน +1

      @@mrhtutoring Since sqrt(2) is not the same as sqrt(-1), then sqrt(-1) will have to change to i. Final answer is i(sqrt(2))

    • @mrhtutoring
      @mrhtutoring  11 หลายเดือนก่อน +1

      👍

    • @janami-dharmam
      @janami-dharmam 11 หลายเดือนก่อน +1

      @@mrhtutoring it will be sqrt(-1)*sqrt(2); often written shorthand as sqrt(-2). When we write a+ib, a and b are implied real but i is not.

  • @farmcat3198
    @farmcat3198 3 หลายเดือนก่อน

    I hope you make a decent living with this.

    • @mrhtutoring
      @mrhtutoring  3 หลายเดือนก่อน

      Haha, me too. Unfortunately, no....

    • @farmcat3198
      @farmcat3198 3 หลายเดือนก่อน

      @@mrhtutoring Sorry. I appreciate the videos.

  • @tonilobaaladeitan2770
    @tonilobaaladeitan2770 11 หลายเดือนก่อน

    So we only use + or - when we are to solve for x right?
    Like x² = 4,
    x = +4 or x = -4

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน

      Absolutely correct 👍

    • @sail2byzantium
      @sail2byzantium 10 หลายเดือนก่อน

      @@mrhtutoring
      Ahhh! Okay. This seems, I think, to answer the question I just posted (even if the correct answers to the posted problem should be x= +2 or x = -2 . . . ). From my question, when using the quadratic formula you are solving for x. Here in the above example you are not solving for x.

    • @fahralyacoub8970
      @fahralyacoub8970 10 หลายเดือนก่อน

      why is that so?
      @@mrhtutoring

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน

      That's the convention.

    • @fahralyacoub8970
      @fahralyacoub8970 10 หลายเดือนก่อน

      @@mrhtutoring u mean it's just a thing mathematicians have agreed upon to reduce confusion? or what?

  • @rostikostik3885
    @rostikostik3885 10 หลายเดือนก่อน

    What a complex video...

  • @ericgreenwood7979
    @ericgreenwood7979 10 หลายเดือนก่อน

    So, you are saying in that in the algebraic expression x^2=36, the solution cannot be -6, it can only be +6? I'm sorry, but that is absurd, both +6 and -6 when squared is 36.

    • @biucmm7072
      @biucmm7072 10 หลายเดือนก่อน

      The question is just square root of 36 and that is not an equation, if it is an equation, then you can put -6 and 6 to satisfy the equation, but the above question is square root of 36, square root any number cannot be a negative answer .For instance, square root 4 is 2, square root -4 is 2i. No negative answer for square rooting a number.A lot of people are confused at this, spend some time to understand it.Besides, when it comes to square root, what is the length of a square with 16cm^2 area size? 4 only.Size can't be negative number.Despite that is not a good example,square root a number can't be negative.

    • @ericgreenwood7979
      @ericgreenwood7979 10 หลายเดือนก่อน

      @@biucmm7072 Firstly, the concept of i comes from trying to solve the equation x^2+1=0, which is an algebraic expression. Now, he is partially correct by saying that 6 is the primary solution, which he really means that is is the solution along the primary branch. Any square-root is a multivalued function which means that it has a brach point and requires a branch cut to distinguish solutions. Along the primary branch, 0 to 2 pi, the only solution is 6. However, nothing the problem is restricting to the primary branch, meaning that any branch is acceptable. As for writing it as -sqrt(36), which I do agree with, without restriction to the principle branch, then the correct answer is -(+/-6)=-/+6 or simply +/-6. Finally, for your example, if I told you that the charge squared of an object was 4 C^2, does that determine that the only possible amount of charge that the object has is 2 C, hence positively charged? Of course not since negative charges exist so it could easily have -2 C worth of charge. Even stating that the length of an object is negative does not mean that is wrong, since the negative (in a vectorial sense) can give a nothing of orientation of the object (hence direction it is pointing, for example). You are correct in the fact that certain scalar quantities are chosen to be positive and only positive quantities, only by convention, but that does not mean that any number cannot be negative. The point is, without being careful and restricting to the principle branch, his statement, and hence video, is in correct and can lead to misunderstanding.

    • @PYTHAGORAS101
      @PYTHAGORAS101 7 หลายเดือนก่อน

      Both +6 and -6 when squared is 36 is true but try actually calculating square roots and you will never get a -n result.
      There are ONLY positive square roots despite this video.

  • @jenwilwisethe7686
    @jenwilwisethe7686 10 หลายเดือนก่อน

    Sir why sometime root of number is ± and sometime just + whyy

    • @carultch
      @carultch 10 หลายเดือนก่อน

      The radical sign specifies that we are only interested in the principal root, unless context specifies otherwise. For roots of positive numbers, the convention is that the positive root is the principal root. The +/- sign in front, indicates that we're interested in using both roots as possible contributions to the rest of the equation.

    • @jenwilwisethe7686
      @jenwilwisethe7686 10 หลายเดือนก่อน

      @@carultch i get it now thanks!

  • @davidryanbonelli9242
    @davidryanbonelli9242 9 หลายเดือนก่อน

    Geometry precedes algebra. Lol.
    I hate how we teach mathematics to our youth.

  • @zephyrred3366
    @zephyrred3366 10 หลายเดือนก่อน +1

    I think the answer is wrong, and that is basically because you used bad notation. We usually don't write it like that sqrt(-9), but rather -9^(1/2).
    if z = -9^(1/2) then z2 = -9 then z = +- 3i
    Also -4^(1/2) = +- 2i
    (+- 3i) * (+- 2i) = +- (6 * i^2) /* we take both signs here because signs in the left hand side dont have to be synchonized */ = +- 6

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน

      Have you heard of principal root?

    • @zephyrred3366
      @zephyrred3366 10 หลายเดือนก่อน +2

      @@mrhtutoring it is impossible to properly define principle root for negative numbers, because i is defined as i^2 = -1, but (-i)^1 also equals -1. In other words there are 2 numbers such as i^2 = -1.

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน

      I don't know about how it's done in your country, but in the USA, √-9 = 3i is standard notation

    • @zephyrred3366
      @zephyrred3366 10 หลายเดือนก่อน +1

      @@mrhtutoring well may be
      But isn't it a strange definition? It makes sence for rational numbers because they are ordered, so you've got negatives, positives and zero in between. It is easy to define a principal root. It also has lots of usages esp in geometry where negative length wouldn't make any sense. Complex numbers are unordered. Definition that I googled is quite long. And is this notation usable?

    • @atussentinel
      @atussentinel 10 หลายเดือนก่อน +1

      @@mrhtutoring I'm just curious, what is the "standard" form of √(i) in the US then? or (4)√(-9) (the fourth root of -9)? If you say "ahh those don't have standard form" then comes my following question: why sometimes the "standard" form exists, but sometimes doesn't?
      √-9 = 3i is just weird.
      this notation will only appear in informal math afaic, where "informal" means one can define anything just based on their taste. those things will probably break math at some point.

  • @alastairgreen2077
    @alastairgreen2077 9 หลายเดือนก่อน

    Negative numbers don't a root. Forget all that imaginary nonsense.

    • @mrhtutoring
      @mrhtutoring  9 หลายเดือนก่อน +2

      Tell that to the electrical engineers. 😁

    • @the_linguist_ll
      @the_linguist_ll 9 หลายเดือนก่อน

      You’re wrong

  • @ChuBoCOm
    @ChuBoCOm 10 หลายเดือนก่อน

    i think it is 2i x 3i = 6i^2 = 6 x (-1) = -6?
    edit: I make this comment before watching

  • @Nikioko
    @Nikioko 11 หลายเดือนก่อน +3

    √−9 ⋅ √−4 = −√36

  • @trucid2
    @trucid2 10 หลายเดือนก่อน

    Video is 3:14 long. Coincidence? I think not.

  • @margaretwelsh6445
    @margaretwelsh6445 8 หลายเดือนก่อน

    6

  • @Nikioko
    @Nikioko 11 หลายเดือนก่อน +1

    1:22: Actually, the definition of i is i² = −1.
    The simple reason is to avoid exactly that if i = √−1, then i² = √−1 ⋅ √−1 = √(−1)² = √1 = 1.

    • @husseinabdulkadir6707
      @husseinabdulkadir6707 10 หลายเดือนก่อน

      i stands for √−1 hence (√−1)(√−1)=i square means (√−1)square, therefore cancel the square with root sign, the final is -1

    • @Nikioko
      @Nikioko 10 หลายเดือนก่อน

      @@husseinabdulkadir6707 No. The definiton is as I said, for the reason I mentioned:
      (√−1)² = √−1 ⋅ √−1 = √[(−1) ⋅ (−1)] = √1 = 1.
      In complex numbers, radical sign and square do not simply cancel out.

    • @RealMesaMike
      @RealMesaMike 10 หลายเดือนก่อน

      ​@@Nikioko
      The property that sqrt(a) × sqrt(b) = sqrt(a×b) only holds if at least one of a or b is non-negative.

  • @luisitojrliad
    @luisitojrliad 10 หลายเดือนก่อน +2

    If you multiply a number by 1 you don’t change the value but if you multiply a number by -1 you change the value

    • @banrtv
      @banrtv 10 หลายเดือนก่อน +1

      technically you are just rotating it, not changing its value.

  • @dave929
    @dave929 10 หลายเดือนก่อน

    -6

  • @unquiche
    @unquiche 10 หลายเดือนก่อน +1

    I did it in my head in just a few seconds, and took a much simpler route: “3i x 2i = 6 x i^2 = 6 x -1 = -6”

    • @DanielDTUBWeinberger
      @DanielDTUBWeinberger 10 หลายเดือนก่อน +1

      I did this too, but I tried justifying 6 also being an anwser and failed to do so, since it's not Q_Q

  • @PremjitTalwar
    @PremjitTalwar 11 หลายเดือนก่อน +6

    You should explain why √36 does not equal +/- 6, rather the answer is only +6. WHY?

    • @Brid727
      @Brid727 11 หลายเดือนก่อน +7

      For god’s sake, we are doing operations not equations
      Operations itself only have 1 value
      Also, many values of the operation can be used simultaneously in an equality if it were the case because there is no restriction on that, but when you use the same variable in an equality, you can’t use two values of the same variable simultaneously
      That is why, we only use the principal root which explains as to why sqrt(36)=6

    • @Nikioko
      @Nikioko 11 หลายเดือนก่อน +12

      Because the radical sign, √, is defined as the positive square root of a number.
      If you want the negative square root, you have to write −√. And if you want both square root, you have to write ±√.
      So, if x² = 36, then x = ±6. But if x = √36, then x = 6.

    • @Brid727
      @Brid727 11 หลายเดือนก่อน +2

      @@Nikioko to add on to that, if you were to do sqrt{(-6)^2} then cancelling the square and the square root would be what most people would do. But by the order of operations, you’re supposed to deal with (-6)^2 first and then take the square root of that
      If you think about it using logic, if you have to square (-6)^2 and then take the square root of it, then it can’t equal to -6 since you’re unable to directly cancel the square and the square root
      I also have another analogy to think
      Let’s take a simple equation, say 2+2=4
      If you were to square root this on both sides, then it’s just sqrt(2+2) = sqrt(4)
      Then sqrt(2+2)=+/-2
      But if you think carefully using logic, you’d think, “How can the square root of the sum of two positive integers even result in a negative number?”
      So I’d say sqrt(2+2) = +2

    • @Nikioko
      @Nikioko 11 หลายเดือนก่อน +6

      @@Brid727 Actually, by the order of operations, roots and exponentiations have the same priority. In fact, roots are just exponentiations with inverted values, just like divisions are multiplications with inverted values. And subtractions are additions of negative values.

    • @Brid727
      @Brid727 11 หลายเดือนก่อน +2

      @@Nikioko ok got it

  • @Morgyborgyblob
    @Morgyborgyblob 10 หลายเดือนก่อน

    If sqrt(ab) = sqrt(a) x sqrt(b) then sqrt(a) x sqrt(b must be equal to sqrt(ab)

    • @RealMesaMike
      @RealMesaMike 10 หลายเดือนก่อน

      By standard PEMDAS obedience training, to get sqrt(a) × sqrt(b) you have to take the square roots of a and b each individually before you can multiply their results together.
      And so the property that sqrt(a) × sqrt(b) = sqrt(a×b) only holds if at least one of a or b is non-negative.

  • @kimobrien.
    @kimobrien. 10 หลายเดือนก่อน

    WRONG If you only using positive numbers in your square roots than you don't get to use either imaginary numbers in your calculations or negative numbers in the answer either. Once you opened the door with a negative number in the problem and made the door wider by including the imaginaries your don't get to arbitrarily close it. So without any further constraints that should have been introduced at the beginning the correct answer is plus or minus 6. Which is the same as square root of 36. A case of playing games with definitions to get an odd ball answer. A calculator or computer might yield such answer depending on how it was set up to deal with square roots of negative numbers, imaginary numbers and its orders of operations.

  • @mrmimi807
    @mrmimi807 11 หลายเดือนก่อน

    = -6

  • @vinita3890
    @vinita3890 10 หลายเดือนก่อน

    ±6

  • @ruthenianthruth
    @ruthenianthruth 8 หลายเดือนก่อน

    Now I understand how they calculated Big Bang. Math is flexible and you cannot rely on it solely when doing scientific research.

  • @philiplombardo4332
    @philiplombardo4332 10 หลายเดือนก่อน

    When multiplying two negatives it becomes a positive.

    • @RealMesaMike
      @RealMesaMike 10 หลายเดือนก่อน +2

      Yes, but taking the square root takes precedence over multiplication, so you shouldn't be multiplying those two numbers first (remember your PEMDAS obedience training?)
      With that in mind, you can see that the property sqrt(a) × sqrt(b) = sqrt(a×b) only holds if at least one of a or b is non-negative.