A very tricky Question from Oxford University Entrance Exam | Find the Value of x=?

แชร์
ฝัง
  • เผยแพร่เมื่อ 24 พ.ย. 2024

ความคิดเห็น • 14

  • @MrGeorge1896
    @MrGeorge1896 หลายเดือนก่อน +10

    Nice problem but the solution seems to be too complicated.
    Put ((x+1)/(x-1))² on the RHS and multiply by x² (x - 1)²:
    (x + 1)² (x - 1)² = x² (x - 1)² + x² (x + 1)²
    x⁴ - 2x² + 1 = x² (2x² + 2)
    x⁴ + 4x² - 1 = 0
    solve for x²: x² = -2 ± √5
    now we get x = ±√( -2 ±√5)

    • @9허공
      @9허공 หลายเดือนก่อน

      totally agreed!

    • @木下雄哉
      @木下雄哉 หลายเดือนก่อน

      nice🎉

    • @jlp8573
      @jlp8573 หลายเดือนก่อน

      did the same. But Super Academy seems to like to overcomplicate his solutions...

  • @souzasilva5471
    @souzasilva5471 หลายเดือนก่อน +2

    Resolvi de maneira bem mais simples. Desenvolvi e cheguei
    em x^4 + 4x^2 = 1, adicionei 4 aos dois lados, fatorei e calculei as raízes. (I solved it in a much simpler way. I developed and arrived
    at x^4 + 4x^2 = 1, I added 4 to both sides, factored and calculated the roots.)

    • @icebear771
      @icebear771 หลายเดือนก่อน

      I did the same, it tooks minutes five minutes.
      But why make it simple when you can make it complicated😂😂

  • @anestismoutafidis4575
    @anestismoutafidis4575 หลายเดือนก่อน

    (-0,5+1/-0,5)^2 - (-0,5+1/-0,5-1)^2=
    (0,25/0,25)-(0,25/2,25)=1-0,1=0,9
    (-0,485+1/-0,485)^2-(-0,485+1/-0,485-1)^2=
    (0,265/0,235)-(0,265/2,205)=
    1,127-0,120=1,00 x=-0,485

  • @maamouhinda7722
    @maamouhinda7722 หลายเดือนก่อน +1

    Your way it's ok but too hard and long. This is a short solution:
    (x+1/x)^2*(1-(x/x+1)^2*(x+1/x-1)^2)=1
    (x+1/x)^2*(1-(x/(x-1))^2)=1
    1-(x/(x-1))^2=(x/(x+1))^2
    (x/(x-1))^2+(x/(x+1))^2=1
    With commun dominator :
    x^2*(2x^2+2)/(x^2-1)^2=1
    And put y=x^2
    y^2+4y-1=0
    y1= √5-2 et y2= -√5-2
    Only y1 so X = +-√(√5-2)

    • @superacademy247
      @superacademy247  หลายเดือนก่อน

      Thanks for the nice method 😎😍

  • @quinty.support
    @quinty.support 23 วันที่ผ่านมา

    [(x+1)/x]² - [(x+1)/(x-1)]² = 1
    Let, [(x+1)/x]² be A and [(x+1)/(x-1)]² be B
    A = [(x+1)/x]² = (x+1)²/x² = (x²+2x+1)/x²
    B = [(x+1)/(x-1)]² = (x+1)²/(x-1)² = (x²+2x+1)/(x²-2x+1)
    A-B = 1
    => (x²+2x+1)/x² - (x²+2x+1)/(x²-2x+1) = 1
    => [(x²+2x+1)(x²-2x+1) - (x²+2x+1)x²]/[x²(x²-2x+1)] = 1
    L.H.S = N/D
    N = (x²+2x+1)(x²-2x+1) - x²(x²+2x+1) = x⁴ - 2x³ + x² + 2x³ - 4x² + 2x + x² - 2x + 1 = x⁴ - 2x³ + 1
    D = x²(x²+2x+1) = x⁴ + 2x³ + x²
    N/D = [x⁴-2x²+1-(x⁴+2x³+x²)]/[x²(x²-2x+1)] = 1
    => x²(x²-2x+1) = x⁴-2x²+1-x⁴-2x³-x²
    => x⁴-2x³+x³+2x³+3x²-1=0
    => x⁴ + 4x² - 1 = 0
    (suppose: y = x²)
    (a=1, b=4, c =-1)
    ∆ = b²-4ac = (4)²-4(1)(-1) = 16 -(-4) = 16+4 = 20
    y = (-b±√∆)/2a = (-4±√20)/2 = (-4 ± 2√5)/2 = -2±√5
    [Recall → y² = x]
    Case 1:
    x² = -2 - √5
    => x² = -(2 + √5)
    => x = i²(2 + √5)
    => x= ±i√(2+√5))
    Case 2:
    x² = -2 + √5
    => x = ±√(-2 + √5)

  • @didierblaizeau1194
    @didierblaizeau1194 หลายเดือนก่อน

    Il y a en efffet beaucoup plus simple !

  • @key_board_x
    @key_board_x หลายเดือนก่อน

    [(x + 1)/x]² - [(x + 1)/(x - 1)]² = 1
    [(x + 1)²/x²] - [(x + 1)²/(x - 1)²] = 1
    [(x + 1)².(x - 1)² - x².(x + 1)²] / [x².(x - 1)²] = 1
    (x + 1)².(x - 1)² - x².(x + 1)² = x².(x - 1)²
    (x + 1)².(x - 1)² - x².(x + 1)² - x².(x - 1)² = 0
    (x + 1)².(x - 1)² - x².[(x + 1)² + (x - 1)²] = 0
    (x² + 2x + 1).(x² - 2x + 1) - x².[x² + 2x + 1 + x² - 2x + 1] = 0
    (x⁴ - 2x³ + x² + 2x³ - 4x² + 2x + x² - 2x + 1) - x².(2x² + 2) = 0
    (x⁴ - 2x² + 1) - 2x⁴ - 2x² = 0
    x⁴ - 2x² + 1 - 2x⁴ - 2x² = 0
    - x⁴ - 4x² + 1 = 0
    x⁴ + 4x² - 1 = 0
    Δ = 4² - (4 * - 1) = 16 + 4 = 20
    x² = (- 4 ± √20)/2
    x² = (- 4 ± 2√5)/2
    x² = - 2 ± √5
    First case: x² = - 2 + √5
    x² = - 2 + √5
    x = ± √(- 2 + √5)
    Second case: x² = - 2 - √5
    x² = - (2 + √5)
    x² = i².(2 + √5)
    x = ± i.√(√5 + 2)