Japanese | Can you solve this? | Nice Math Olympiad Algebra Problem

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 พ.ย. 2024

ความคิดเห็น • 6

  • @bogdangarkusha8727
    @bogdangarkusha8727 หลายเดือนก่อน +1

    a=b^2 - 13
    a=(b+√13)(b-√13)
    (b+√13)^2(b-√13)^2 = b+13
    (b^2+2b√13+13)(b^2-2b√13+13) = b+13
    let u=b^2+13, v=2b√13
    (u+v)(u-v)=b+13
    u^2-v^2=b+13
    reverting
    (b^2+13)^2 - 42b^2 = b+13
    (b^2+13)^2 = 42b^2 + b + 13
    b^4 + 26b^2 + 169 = 42b^2 + b + 13
    b^4 - 16b^2 - b + 156 = 0
    to solve, we can use a ready formula for quartic equation
    and something seems off, because both vid solution and this form should be true, whereas using wolfram alpha
    b_1,2=-3.2008+-1.5242i
    b_3,4=3.2008+-1.4721i
    (vid solution is true, of course 😊, (-4)^2 = 13+3)

  • @rabotaakk-nw9nm
    @rabotaakk-nw9nm หลายเดือนก่อน

    2:15 a+b+1=0; b=-a-1 -> (1)
    a²=(-a-1)+13; a²+a-12=0 => a1=-4; a2=3
    b1=-(-4)-1=3; b2=-3-1=-4
    (a, b)=(-4, 3),( 3,-4) 😁

  • @johnscovill4783
    @johnscovill4783 หลายเดือนก่อน

    Hi, Master T. When I graph this on Desmos, I see your solutions. And two additional ones.

  • @prollysine
    @prollysine หลายเดือนก่อน

    b=a^2-13 , a^4 +/- a^3 -26a^2 - a + 156 = 0 , (a+4)(a^3-4a^2-10a+39)=0 , a= -4 , a^3-4a^2-10a+39=0 , (a-3)(a^2-a-13)=0 , a= 3 ,
    +1 +4 +1 -3
    -4 -16 -1 +3
    -10 -40 -13 +39=0 ,
    +39 +156 = 0 , a^2-a-13=0 , a=(1+/-V(1+52))=2 , a=(1+/-V53)/2 , /not integer/not a solu ,
    b=a^2-13 , solu , (a, b) = (-4 , 3 ) , ( 3 , -4) ,
    test , (a, b) = (-4 , 3 ) , (-4)^2=b+13 , 16=3+13 , -> 16 , OK , test , (a, b) = ( 3 , -4) , 3^2= -4+13 , -> 9 , OK ,