Convex and Concave Functions

แชร์
ฝัง
  • เผยแพร่เมื่อ 13 ม.ค. 2025

ความคิดเห็น • 24

  • @HimanshuGupta-eb6vp
    @HimanshuGupta-eb6vp 2 ปีที่แล้ว +4

    Thanks a lot for such detailed video with good amount of exercise too! You are really helping students a lot! Love and respect from France

  • @akashdutta6982
    @akashdutta6982 ปีที่แล้ว +2

    in 11:27 how x1x2 is a convex fn

  • @messigonnawin2144
    @messigonnawin2144 หลายเดือนก่อน +1

    best video sir

  • @debasishkamila9718
    @debasishkamila9718 2 ปีที่แล้ว +1

    Sir your explanation on concave and convex function are fabulous. But I want to know also how to find quasiconcavity and quasi convaxity function.

  • @Earlybirds808
    @Earlybirds808 3 ปีที่แล้ว +1

    Excellent job sir best vedio Lecture on concavity and convexity 👍👍👍👍👍👍👍👍

    • @DrHarishGarg
      @DrHarishGarg  3 ปีที่แล้ว +1

      Many thanks for appreciation

  • @mohamedalouzi3690
    @mohamedalouzi3690 11 หลายเดือนก่อน

    The determinate of H of -x1x2 are 0 and negative and the eig values are positive and negative. So the function not convex and not concave. How did you claim that the function is convex? Thanks

  • @anjalibesoya9609
    @anjalibesoya9609 2 ปีที่แล้ว +1

    Such a comprehensive video! Thanks a lot Sir! Really appreciate your efforts. Also, sir are there any videos on quasi convexity and concavity on channel?. If yes, kindly do share the link. Thanks in advance!

    • @DrHarishGarg
      @DrHarishGarg  2 ปีที่แล้ว

      Thanks... Its my pleasure.

  • @rajubhakta9295
    @rajubhakta9295 ปีที่แล้ว

    How we will show that the function f(x,\theta)=1-x/\theta, 0

  • @techtree4470
    @techtree4470 ปีที่แล้ว

    principle minor 4 kidgr sy nikla ha ap ny?

  • @girishbhargava6367
    @girishbhargava6367 3 ปีที่แล้ว

    Best explanation

  • @akashdutta6982
    @akashdutta6982 3 ปีที่แล้ว

    Best explanation❤❤

    • @DrHarishGarg
      @DrHarishGarg  3 ปีที่แล้ว +2

      Glad you like it ... Hope others too

  • @pranshinigam8998
    @pranshinigam8998 3 ปีที่แล้ว

    Sir clc means??

    • @DrHarishGarg
      @DrHarishGarg  3 ปีที่แล้ว +2

      Convex linear combination

  • @Earlybirds808
    @Earlybirds808 3 ปีที่แล้ว

    Sir logx covex hai?

    • @DrHarishGarg
      @DrHarishGarg  3 ปีที่แล้ว +1

      Its a concave .... As f'' =-1/x^2

    • @Earlybirds808
      @Earlybirds808 3 ปีที่แล้ว

      @@DrHarishGarg thank you so much sir i got it now. Actually i got confused between convex upward every where and concove which is i think same......

  • @sparui532
    @sparui532 3 ปีที่แล้ว +1

    What will happen if 2nd derivative is zero

    • @DrHarishGarg
      @DrHarishGarg  3 ปีที่แล้ว +7

      Compute third, fourth , fifth .... Derivatives until you get first non zero value at stationary point. If odd power derviative is non zero then point is saddle otherwise if even order derivation is > then min else maximum.
      For example f(x)=x^4 then stationary point is x=0. Here f^''(x)=0 and hence compute f^'''(x) =24x =0. So compute next derivative f^''''(x)= 24 non zero. As fourth derivative (which is even) is non zero and it is >0 thus stationary point (x=0) is minimum.
      Hope it clear

  • @NoorHafsa-fe2lu
    @NoorHafsa-fe2lu 8 หลายเดือนก่อน +1

    👍

  • @TheShrishtySharma
    @TheShrishtySharma 3 ปีที่แล้ว

    Tq so much sir