"If you cannot explain something in simple terms, you don't understand it." This video really shows how deep an understanding you have on the shader topic. Thanks so much!
Should also mention all lighting in doom eternal is dynamic. The "pre-processing" that is being done is called clustered forward rendering, in which a culling stage reduces the lights sampled in a specific part of the scene.
Yep, unfortunately had to cut out clustered rendering to keep the talk focused and under half an hour. It's a very cool technique explained in the Doom Eternal graphics study by Adrian Courrèges (one of my sources at the end).
@@benmandrew I figured, thought I should clarify for those that are curious about the technique and "prepossessing" (technically correct but I would have just called it a culling pass, preprocessing implies a static, pre-runtime/serialised nature to which the light culling pass is not), definitely beyond my paygrade, but is really cool.
I just tried forward rendering in unreal engine with MSAA and I feel like I am born again without needing glasses, who decided it was such a great idea to go crazy with the AA smudge tools.
Definitely still a heady topic for me, but thank you for explaining it. Specially for the emerging trends and outlook in the end, definitely interesting.
Thank you! Been going back and forth between defferred and forward as it's a lot more effort using forward shading - requiring much more planning and optimising. I plan to force myself to use Forward rendering during development and commit to a much more optimised game rather than go for dynamic lighting.
@@donovan6320A shader can loop over many light sources during the same rendering step, but many screen space effects are compromised if you don't use deferred.
@@donovan6320Deferred is only important if you need some extra data from each separate rendering step that isn't easily generated by forward only, but lighting can be calculated in a single step for forward nowadays.
@@donovan6320I found out more about it, modern hardware still supports a lot of light sources in forward mode simply by iterating over them but there are methods to improve this via something similar to culling. If you use a method for global illumination that is good enough, deferred or forward don't matter that much because the lighting is calculated in another rendering step.
7:25 In webgpu, the vertex and fragment shader code is provided to the pipeline. This means that a pipeline can only execute 1 fragment shader. So to render the scene we wouldn't just have the nested loops: lights>objects, but rather materials>lights>objectsWithThisMaterial, and for each material set a different pipeline. Am I missing something here? is that pipeline-per-material, the intended way to draw the objects for this case? 19:30 In WGSL it doesn't seem to be possible to use some samplers inside branching code. Is there a way around that?
Deferred rendering has the advantage of calculating lights per block and not per pixel, decreasing the GPU overload, so it doesn’t matter how many lights cross your blocks because it won’t affect performance. If I’m not mistaken, Apple has TBDR Patents and has been using it on the iPhone since 2017.
Is curious how everybody who illustrates a depth buffer always use the reverse depth approach, where white is closer and black is farther, more curious is that the reverse depth buffer distributes the depth precision much better than the original, 'forward' depth buffer, where closer objects have a depth close to 0 and far objects have a depth closer to 1 😊
Correct, for those interested this is due to the non-linear perspective transformation (1/z) either combining with or cancelling out the somewhat-logarithmic distribution of points in IEEE floating point numbers. A really good explanation is on the Nvidia developer website -- developer.nvidia.com/content/depth-precision-visualized.
why is forward always portrayed as lights x meshes. i have never written a forward renderer like that. just put the lights in a buffer and then send the lights affecting a mesh as indices. gives you 1 uniform branch for the loop but that should be fine and way faster than multiple draw calls lol
why do you repeat "moving the g-buffer" ? It doesn't need to move. It's only ever allocated once. It is written once for each frame. Once it has been written, it is read-only. I do not understand. Do we transfer its contents between RAM and VRAM frequently or something?
But surely you just put your lights into a GPU buffer and then you can sample the buffer whilst drawing meshes. That makes it just M draw calls for M meshes, with sampling into the buffer for N lights which is really not any different from deferred, other than that deferred avoids redrawing fragments - but even a depth prepass on forward solves that issue.
Man universities have fallen so far. This kind of rendering is really slow and incapable of anything that compute can do. Yea lets make the pipeline even bigger and add even more draw calls lmao.
"If you cannot explain something in simple terms, you don't understand it." This video really shows how deep an understanding you have on the shader topic. Thanks so much!
Can't believe such a perfect digestion of high level information into actionable mental models exist. Thank you!
Hands down the best, most straightforward explanation of forward vs. reverse rendering I have seen!
Should also mention all lighting in doom eternal is dynamic. The "pre-processing" that is being done is called clustered forward rendering, in which a culling stage reduces the lights sampled in a specific part of the scene.
Yep, unfortunately had to cut out clustered rendering to keep the talk focused and under half an hour. It's a very cool technique explained in the Doom Eternal graphics study by Adrian Courrèges (one of my sources at the end).
@@benmandrew I figured, thought I should clarify for those that are curious about the technique and "prepossessing" (technically correct but I would have just called it a culling pass, preprocessing implies a static, pre-runtime/serialised nature to which the light culling pass is not), definitely beyond my paygrade, but is really cool.
Amazing explanation, I could finally grasp the pros and cons of each technique
This is gold content, watched several videos on the topic, this is the one that actually makes me understand.
best video to explain them, from the history , hardware to gpu pipeline work , thank you. looking forward more tutorial with this way .
I just tried forward rendering in unreal engine with MSAA and I feel like I am born again without needing glasses, who decided it was such a great idea to go crazy with the AA smudge tools.
Thanks for video!
Thanks for the video, i had a lot of questions on the topic and this was an absolute clear explanation of the differences
Definitely still a heady topic for me, but thank you for explaining it. Specially for the emerging trends and outlook in the end, definitely interesting.
Thank you so much for sharing your knowledge sir, I learned a lot from your presentation!
Unbelievably good explanation. I cannot thank you enough!
Excellent talk. I did a little research and found out that you are just a young lad. Wish you all the best and thanks for such a great talk.
Excellent. Best video about this topic I've found. Thank you.
Can't wait for the return of MSAA and sharp graphics again!
th-cam.com/video/EIWHvPP0U64/w-d-xo.html
Exactly!
Shrek?? no way 😅 that’s great. Awesome talk, thanks
Thanks a lot for sharing, didn't expect a dive into the current state of things in games. It was a very pleasant surprise :)
Thanks a lot.
Saved a lot of time and effort.
Thank you! Been going back and forth between defferred and forward as it's a lot more effort using forward shading - requiring much more planning and optimising. I plan to force myself to use Forward rendering during development and commit to a much more optimised game rather than go for dynamic lighting.
I mean you can use forward and have a lot of dynamic lighting... Doom Eternal uses all dynamic forward lighting.
@@donovan6320A shader can loop over many light sources during the same rendering step, but many screen space effects are compromised if you don't use deferred.
@@vitordelima You arent wrong?
@@donovan6320Deferred is only important if you need some extra data from each separate rendering step that isn't easily generated by forward only, but lighting can be calculated in a single step for forward nowadays.
@@donovan6320I found out more about it, modern hardware still supports a lot of light sources in forward mode simply by iterating over them but there are methods to improve this via something similar to culling.
If you use a method for global illumination that is good enough, deferred or forward don't matter that much because the lighting is calculated in another rendering step.
7:25 In webgpu, the vertex and fragment shader code is provided to the pipeline. This means that a pipeline can only execute 1 fragment shader. So to render the scene we wouldn't just have the nested loops: lights>objects, but rather materials>lights>objectsWithThisMaterial, and for each material set a different pipeline. Am I missing something here? is that pipeline-per-material, the intended way to draw the objects for this case?
19:30 In WGSL it doesn't seem to be possible to use some samplers inside branching code. Is there a way around that?
Thanks mate
Deferred rendering has the advantage of calculating lights per block and not per pixel, decreasing the GPU overload, so it doesn’t matter how many lights cross your blocks because it won’t affect performance. If I’m not mistaken, Apple has TBDR Patents and has been using it on the iPhone since 2017.
Is curious how everybody who illustrates a depth buffer always use the reverse depth approach, where white is closer and black is farther, more curious is that the reverse depth buffer distributes the depth precision much better than the original, 'forward' depth buffer, where closer objects have a depth close to 0 and far objects have a depth closer to 1 😊
Correct, for those interested this is due to the non-linear perspective transformation (1/z) either combining with or cancelling out the somewhat-logarithmic distribution of points in IEEE floating point numbers. A really good explanation is on the Nvidia developer website -- developer.nvidia.com/content/depth-precision-visualized.
why is forward always portrayed as lights x meshes. i have never written a forward renderer like that. just put the lights in a buffer and then send the lights affecting a mesh as indices.
gives you 1 uniform branch for the loop but that should be fine and way faster than multiple draw calls lol
Very good video!
very well explained, loved it
Hmm, I thought the PowerVR/Dreamcast was the first tile based deffered renderer?
Thank you! :)
thank you shrek
This is such a helpful video!
have you checked out the "clustered forward renderer" in bevy? Looks pretty nice. Don't know if any downsides. Says unlimited lights
very useful ! thanks a lot
why do you repeat "moving the g-buffer" ? It doesn't need to move. It's only ever allocated once. It is written once for each frame. Once it has been written, it is read-only. I do not understand. Do we transfer its contents between RAM and VRAM frequently or something?
excellent
But surely you just put your lights into a GPU buffer and then you can sample the buffer whilst drawing meshes. That makes it just M draw calls for M meshes, with sampling into the buffer for N lights which is really not any different from deferred, other than that deferred avoids redrawing fragments - but even a depth prepass on forward solves that issue.
what did crysis use?
And this is why you're at Cambridge University
谢谢你
别客气
forward rendering looked cleaner and sharper, defered just looks blurred
"this will change in the near future"
Nope, we just get games with worse and worse fps!
Thanks for the great video
Man universities have fallen so far. This kind of rendering is really slow and incapable of anything that compute can do. Yea lets make the pipeline even bigger and add even more draw calls lmao.