Japanese | Can You Solve This? | A Nice Math Olympiad Simplification Problem | 99% Miss This!

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ธ.ค. 2024

ความคิดเห็น • 1

  • @kingfukj
    @kingfukj 4 วันที่ผ่านมา +1

    Recognising sqrt(3)/2 being cos(theta) and 1/2 being sin(theta),
    (sqrt(2)/2 + 1/2) ^9 can be reduced to
    ((cos(theta) + sin(theta))^2)^4 * (cos(theta) + sin(theta))
    (cos(theta) + sin(theta))^2 = 1 + sin(2. theta)
    So the expression is boiled down to
    (1 + sin(2*theta))^4 * (sin(theta) + cos(theta))
    The power 4 term can be easily expanded by the Binomial's theorem. Then, the expanded terns can be further multiplied by (cos(theta) + sin(theta))
    The solution is then arrived.
    My 2 cents