10 Most Unfair Integrals from MIT Integration Bee

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 พ.ย. 2024

ความคิดเห็น • 29

  • @SammyBaunoch
    @SammyBaunoch 18 วันที่ผ่านมา +7

    I LOVE THIS DUDE!!! HE IS BACK AT IT AGAIN fresh off the goat series!!!

  • @calcul8er205
    @calcul8er205 18 วันที่ผ่านมา +11

    I’m pretty sure what you’ve been calling “periodicity” is what is meant by orthogonality. In the context of the 4th integral, it just means that int_0^{2pi} cos(mx)cos(nx)dx=0 for integers m=/=n. In linear algebra, an inner product space is a vector space equipped with an abstraction of the dot product called an inner product, usually denoted as . The inner product space that is useful to consider for this integral is V= real linear combinations of B={1,sinx,cosx,sin(2x),cos(2x),…} with inner product =int_0^pi f(x)g(x)dx. We call B an orthogonal basis of V because for any distinct f,g in B, =0. Properties of this particular inner product space are also incredibly useful in understanding Fourier series and also allows for generalisations of Fourier series.

    • @Silver-cu5up
      @Silver-cu5up  18 วันที่ผ่านมา +3

      OHHHHHHH, that connection makes a lot of sense now!! Thank you for the explanation. Now the real question is, how on earth do you apply this knowledge with this integral in speed?

    • @calcul8er205
      @calcul8er205 18 วันที่ผ่านมา +1

      ⁠@@Silver-cu5up I think that complexifying then either residue theorem or a different orthogonality result is the quickest approach to this integral. By writing cos(5x) as Re(e^{5ix}), the integrand can be rewritten as (1/32)Re(2e^{ix}-1-e^{2ix})^5 which is nicely set up for the residue theorem. Alternatively, you could consider expanding out this trinomial expansion and using the fact that int_0^{2pi} e^{nix} dx =0 for non-zero integer n, so only the constant term in the expansion will actually matter.

    • @Silver-cu5up
      @Silver-cu5up  18 วันที่ผ่านมา +2

      @@calcul8er205 0o0 Oh dayum!! Thanks for sharing this idea!

  • @Kishblockpro
    @Kishblockpro 18 วันที่ผ่านมา +2

    first one is not bs, atleast, its quite a standard technique, like when you have to integrate e^xf(x) you look for a way to write f(x) as f(x) + f'(x), if you havent seen it before, fair enough for considering it to be difficult, but in my jee coaching classes its a standard technique and most integrals where you have e^x times something you solve like that. So i imagine the contestants were well versed in it, that said its not trivial to spot how to split f(x) into f(x) + f'(x) here, its certainly challenging, but much more doable when you're 90% sure youre trying the right approach

    • @LmaoDed-haha
      @LmaoDed-haha 18 วันที่ผ่านมา

      Yeahhh agreed

  • @Kishblockpro
    @Kishblockpro 18 วันที่ผ่านมา +2

    ooh i got the 12:38 one in less than 3 minutes, atleast the method for it, like you combine the sin20x and sin22x and with the 2sin(a+b)/2cos(a-b)/2 identity, do the same for the other bracket but with the cos identity, you get a common term to factor, cancel the squares and its trivial from there. Its quite doable without complex right? I dont understand why you think its not doable otherwise. Hell im surprised this is a finals integral i struggled way more on the others, now im wondering if i made a mistake in my calculations, let me write everything out here
    sin22x + sin20x = 2sin(21x)cosx
    the first bracket becomes ((sin21x(2cosx+3))^2
    cos22x + cos20x = 2cos(21x)cosx
    and the second bracket becomes ((cos(21x)(2cosx+3))^2
    factor the common term you get (2cosx+3)sqrt(sin^2(21x) + cos^2(21x))
    now its just integrating 2cosx + 3
    im not sure where i went wrong, it seems too easy

  • @LeeeBlom
    @LeeeBlom 15 วันที่ผ่านมา +1

    Integration bee is soposed to be challenging and just for fun.its not a competition if it's not challenging

  • @Atomcodes_16
    @Atomcodes_16 16 วันที่ผ่านมา +1

    Does anyone know if there are solutions to all the integrals somewhere? I'd like to know if I'm doing it right.

    • @Silver-cu5up
      @Silver-cu5up  16 วันที่ผ่านมา

      @@Atomcodes_16 unfortunately theres no official solution for all integrals ;_;

  • @danielrosado3213
    @danielrosado3213 18 วันที่ผ่านมา +2

    "I don't know what that means" this man cannot be more relatable
    I have to say I agree with some of these but for other ones I think they're pretty good problems.

    • @Silver-cu5up
      @Silver-cu5up  18 วันที่ผ่านมา

      @@danielrosado3213 yeee lol

  • @cdkw2
    @cdkw2 18 วันที่ผ่านมา

    12:38 dont doubt the JEE aspirants man, they pull out random shit that just works

  • @Kishblockpro
    @Kishblockpro 17 วันที่ผ่านมา

    3:40 please tell me how to solve this using reverse quotient rule

    • @Silver-cu5up
      @Silver-cu5up  17 วันที่ผ่านมา

      The answer is actually reverse product rule. But im assuming its one of those guess n check. Other than that, idk... ;_;

    • @Kishblockpro
      @Kishblockpro 17 วันที่ผ่านมา

      @@Silver-cu5up damn...

    • @Kishblockpro
      @Kishblockpro 17 วันที่ผ่านมา

      @@Silver-cu5up how do u know it's reverse product rule?

    • @Silver-cu5up
      @Silver-cu5up  17 วันที่ผ่านมา

      @@Kishblockpro the answer it gave shows that it uses reverse product rule ._.
      but without knowing the answer idk

    • @monishrules6580
      @monishrules6580 15 วันที่ผ่านมา

      Hi ​@@Kishblockpro

  • @LukasTrak
    @LukasTrak 18 วันที่ผ่านมา +1

    What is the glassers master corollary?

    • @Silver-cu5up
      @Silver-cu5up  18 วันที่ผ่านมา +2

      "Let f be a decreasing function. Then integral of f(x+1/x) dx from 1/2 to 2 = integral of f(sqrt(x^2+4))dx from 0 to 3/2."

    • @tommy4808
      @tommy4808 15 วันที่ผ่านมา

      @@Silver-cu5up you mean increasing, right? 🤓

    • @Silver-cu5up
      @Silver-cu5up  15 วันที่ผ่านมา

      @tommy4808 The corollary says decreasing 0_0

    • @tommy4808
      @tommy4808 14 วันที่ผ่านมา

      @ log is increasing though?

    • @Silver-cu5up
      @Silver-cu5up  14 วันที่ผ่านมา

      @@tommy4808 its from here:
      artofproblemsolving.com/community/q2h3012296p27059643

  • @shieldmytears
    @shieldmytears 18 วันที่ผ่านมา +1

    2022 was definitely the most braindead year

    • @Silver-cu5up
      @Silver-cu5up  18 วันที่ผ่านมา

      Absolutely ._.