Bonjour, merci pour votre explication J'aimerais bien savoir, peut-on dire que tout application continue de S1 vers S1 qui ne possède pas de points fixe est homotope à l'identité ? Si c'est le cas j'aimerais bien savoir pourquoi Merci à vous
Pendant toutes le vidéo je ne comprenais pas car cela pour moi étais faux, mais j'ai finis par comprendre que la rétraction n'est pas une bijection. Au début je pensais que la question était de trouver un homomorphisme de la sphère vers la boule, ce qui n'as pas de sens, en effet la dimension de la boule est > à elle de la sphère.
A 3'20, c'est tx supérieur OU EGAL à 0
Bonjour, merci pour votre explication
J'aimerais bien savoir, peut-on dire que tout application continue de S1 vers S1 qui ne possède pas de points fixe est homotope à l'identité ? Si c'est le cas j'aimerais bien savoir pourquoi
Merci à vous
Pendant toutes le vidéo je ne comprenais pas car cela pour moi étais faux, mais j'ai finis par comprendre que la rétraction n'est pas une bijection.
Au début je pensais que la question était de trouver un homomorphisme de la sphère vers la boule, ce qui n'as pas de sens, en effet la dimension de la boule est > à elle de la sphère.