An Interesting Nonstandard Equation

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024

ความคิดเห็น • 44

  • @oldjoec3710
    @oldjoec3710 4 วันที่ผ่านมา +6

    Nice surprise with the Lambert W. I almost stopped the video when I saw Lambert W, which I usually consider equivalent to giving up on an analytical solution and resorting to a table lookup or numerical solution. Since I can get numerical spreadsheet solutions to these problems without knowing very much, that doesn't normally do anything to extend my analytical skills.
    In this case, using Lambert W twice to 'undo' itself is very satisfying, and this is the first time I've felt good about its use.

    • @SyberMath
      @SyberMath  4 วันที่ผ่านมา

      Right on

    • @bsmith6276
      @bsmith6276 4 วันที่ผ่านมา +1

      Right on! First video I have seen that did something with Lambert W more than just conclude W(something) is the answer.

  • @newmanhiding2314
    @newmanhiding2314 4 วันที่ผ่านมา +3

    Guessing and checking worked just fine for me.

  • @hrk992
    @hrk992 4 วันที่ผ่านมา +3

    256^x = 1/x
    256 = (1/x)^(1/x)
    256 = 2^8 = 2^(2*4) = 4^4
    4^4 = (1/x)^(1/x)
    1/x = 4
    x = 1/4

  • @DukeofEarl1961
    @DukeofEarl1961 3 วันที่ผ่านมา +1

    Using W() twice nearly always means a simpler solution simply matching bases and powers is possible...

  • @devondevon4366
    @devondevon4366 วันที่ผ่านมา

    Answer x = 1/4
    256^ x =1/x
    (256^x)^1/x = (1/x)^1/x raised both sides to 1/x
    256 =
    2^8 = (2^8 =256)
    (2^2)^4
    4 ^ 4 =(1/x)^1/x
    4 = 1/x
    x = 1/4 Answer

  • @TedHopp
    @TedHopp 2 วันที่ผ่านมา

    It's clear that there is only one real solution. We know from inspection that x must be positive, since 256^x is always positive. Then, since x•256^x is a strictly increasing function for positive x, it can take on the value 1 at most once.
    But Lambert's W function is multi-branched, so there is likely an infinite family of complex solutions.

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 3 วันที่ผ่านมา

    256^x=1/x
    Raise to 1/x: 256=(1/x)^(1/x)
    But 25y=4⁴ --> 4⁴=(1/x)^(1/x)
    1/x=4 --> x=¼

  • @barakathaider6333
    @barakathaider6333 3 วันที่ผ่านมา

    👍

  • @lesnyk255
    @lesnyk255 4 วันที่ผ่านมา

    Re- method 1: I smelled Lambert from the get-go, and worked out the correct answer, stopping just short of the X= ... but never saw the 2nd appearance of W() coming! Beautifully done. Mathemagic, indeed!

    • @SyberMath
      @SyberMath  4 วันที่ผ่านมา

      Thank you!

  • @DanielToffolo
    @DanielToffolo 3 วันที่ผ่านมา

    Cannae ye use other branches of W?

  • @mcwulf25
    @mcwulf25 3 วันที่ผ่านมา

    Given that the W method neant you had to use 4^4 = 256, why not just replace 256 by 4^4 at the outset.
    Then 4^4x = 1/x
    4^4 = (1/x)^(1/x)
    x = 1/4.
    Or do method 1 base 4 rather than e.

  • @bobbyheffley4955
    @bobbyheffley4955 3 วันที่ผ่านมา

    I obtained x=1/4 by applying the laws of exponents and letting u=1/x.

  • @buffalobilly6046
    @buffalobilly6046 4 วันที่ผ่านมา +1

    *sigh* here we go again with overcomplication of a simple problem. Lambert's function does not need to be base e. And once you "magically" guess that 256 is 4^4 then you have 4x*4^4x = 4 and you can simplify to 4x=1 and x=1/4

    • @SyberMath
      @SyberMath  4 วันที่ผ่านมา

      good

  • @Quest3669
    @Quest3669 4 วันที่ผ่านมา

    4^4=(1/x)^1/x r x= 1/4
    Its even so cab be use with - which dosnt work

  • @bkkboy-cm3eb
    @bkkboy-cm3eb 3 วันที่ผ่านมา

    256=(1/x)^(1/x)
    256=2⁸=4⁴=(1/x)^(1/x)
    ∴1/x=4 →x=1/4

  • @tunistick8044
    @tunistick8044 3 วันที่ผ่านมา +1

    we have to prove it's the only solution

  • @migry
    @migry 4 วันที่ผ่านมา

    Another one for the computerphiles? I haven't watched the video but knowing powers of two I am guessing( 1/16 th). I know as easy as 1+1=2 that 16*16=256 :-) ..Now let me see if I am right.
    And.... egg on the face :-) . I knew it was going to be a power of 2.. I was thinking in the right direction.

    • @SyberMath
      @SyberMath  4 วันที่ผ่านมา

      Nice!

  • @rainerzufall42
    @rainerzufall42 9 ชั่วโมงที่ผ่านมา +1

    x = 1/4... 256^(1/4) = ∜256 = √√256 = √16 = 4 = 1/(1/4) = 4/1 = 4. More solutions? No idea!

    • @rainerzufall42
      @rainerzufall42 9 ชั่วโมงที่ผ่านมา +1

      For all solutions, the approach may be this: 256^x = 1/x
      => x = 256^-x = exp(-x * ln(256)) = exp(-8x * ln(2))
      => x * exp(8x * ln(2) = 1 || * 8 * ln(2)
      => 8x * ln(2) * exp(8x * ln(2)) = 8 * ln(2) || Lambert-W function
      => W(8x * ln(2) * exp(8x * ln(2))) = W(8 * ln(2)) = W(4 * ln(4)) = W(ln(4) * exp(ln(4)))
      => 8x * ln(2) = ln(4) = 2 * ln(2) => x = 2 * ln(2) / (8 * ln(2)) = 1/4. The one I guessed. Only solution within this scope.

  • @msmbpc24
    @msmbpc24 4 วันที่ผ่านมา

    X=1/4

  • @radomirkorac-uu3nk
    @radomirkorac-uu3nk 4 วันที่ผ่านมา

    x=1/4

  • @scottleung9587
    @scottleung9587 4 วันที่ผ่านมา

    I got x=1/4 by inspection.

  • @walterwen2975
    @walterwen2975 3 วันที่ผ่านมา

    An Interesting Nonstandard Equation: 256ˣ = 1/x; x =?
    256ˣ = (2⁸)ˣ = 1/x = x⁻¹, (x⁻¹)⁻¹⸍ˣ = [(2⁸)ˣ]⁻¹⸍ˣ, x¹⸍ˣ = 2⁻⁸ = (2⁻²)⁴ = (1/4)¹⸍⁽¹⸍⁴⁾; x = 1/4

  • @prollysine
    @prollysine 4 วันที่ผ่านมา +1

    x*e^(8*x*ln2)=1 , 8*ln2*x*e^(8*ln2*x)=8*ln2 , 8*ln2=4*ln4 , 8*ln2*x*e^(8*ln2*x)=ln4*e^(ln4) , 8*ln2*x=4*ln4 ,
    4*ln4*x=ln4 , x=1/4 , test , 256^(1/4)=4 , 1/(1/4)=4 , OK ,

  • @vladimirkaplun5774
    @vladimirkaplun5774 4 วันที่ผ่านมา

    🤮

    • @CriticSimon
      @CriticSimon 4 วันที่ผ่านมา

      ???

    • @vladimirkaplun5774
      @vladimirkaplun5774 3 วันที่ผ่านมา

      @CriticSimon same old stuff day after day.

    • @CriticSimon
      @CriticSimon 3 วันที่ผ่านมา

      @@vladimirkaplun5774 You expect every problem to be of a different type?

    • @vladimirkaplun5774
      @vladimirkaplun5774 3 วันที่ผ่านมา

      @@CriticSimon almost... if the difference is just in numbers it looks like simple TH-cam minutes pumping. lhs is increasing, rhs decreasing. hence just one solution which should obviously be power of 2. 2-3 mins maximum. instead he could at least consider general case: (2^n)^x=1/x for example. and nothing to do with Lambert.

    • @vladimirkaplun5774
      @vladimirkaplun5774 3 วันที่ผ่านมา

      16777216^x=1/x for example

  • @SidneiMV
    @SidneiMV 4 วันที่ผ่านมา

    (1/x)^(1/x) = 256 = 2⁸ = 4⁴
    1/x = 4 => *x = 1/4*

  • @Necronomicon-thebookofthedead
    @Necronomicon-thebookofthedead 4 วันที่ผ่านมา

    image search - google
    self-deception is a progressive condition
    image search - poor judgement

  • @rakenzarnsworld2
    @rakenzarnsworld2 4 วันที่ผ่านมา

    x = 1/4