An Interesting Infinite Product

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 พ.ย. 2024

ความคิดเห็น • 31

  • @christosvoskresye
    @christosvoskresye 7 ชั่วโมงที่ผ่านมา +6

    You left off 0/1, which makes it easy.

    • @arthurspuri2948
      @arthurspuri2948 3 ชั่วโมงที่ผ่านมา +3

      What about -1/0? Then we get to the real fun part

    • @christosvoskresye
      @christosvoskresye 3 ชั่วโมงที่ผ่านมา

      @@arthurspuri2948 Or how about defining a function f(x) = (x / (1+x)) * ((1+x)/(2+x))*...?

    • @alex4455
      @alex4455 35 นาทีที่ผ่านมา

      @@arthurspuri2948then the zeros cancel, ez 🤓👍

  • @MathNotationsVids
    @MathNotationsVids 4 ชั่วโมงที่ผ่านมา

    (n-1)/n telescopes to 1/n
    (n+1)/n telescopes to (n+1)/2
    Therefore, the partial products are of the form
    (1/2) • ((n+1)/n) which --> 1/2

  • @dennisdeng3045
    @dennisdeng3045 4 ชั่วโมงที่ผ่านมา +1

    7:59 Without first checking whether the product converges absolutely (by checking the exponential of the infinite sum of the natural logarithmic terms), that is a dangerous move.

    • @dennisdeng3045
      @dennisdeng3045 4 ชั่วโมงที่ผ่านมา

      I did an integral test using S (2~inf.) |ln(1-1/x^2)|dx with a substitution of v = 1-1/x^2 (thus changing the bounds to 0.75 ~ 1) to convince myself of the convergence of the infinite series of ln(1 - 1/n^2) starting at n = 2.

  • @swthiel
    @swthiel 10 ชั่วโมงที่ผ่านมา +2

    Once you've written the product as P=Π[(n+1)(n-1)/n^2 (n= 2, 3...), it's not too tricky to rewrite the product as P=Π(n+1)Π(n-1)/P(n^2) with (n= 2, 3...) and then re-index the (n+1) and (n-1) products to get everything to cancel within a big product (n = 3, 4, ...) except for some leading terms that give you the 1/2.

  • @pierreabbat6157
    @pierreabbat6157 7 ชั่วโมงที่ผ่านมา +4

    8:30 You can't do that! Π((n+1)/n) diverges, like the harmonic series. You get 0×∞.
    Btw it's Π, not π.

  • @farhansadik5423
    @farhansadik5423 9 ชั่วโมงที่ผ่านมา +1

    Fantastic as always man 🎉

  • @someperson188
    @someperson188 8 ชั่วโมงที่ผ่านมา +1

    The nth multiplicand is n(n + 2)/(n + 1)^2, for n = 1, 2, 3, ...
    Lemma. The nth partial product is (n+2)/(2(n+1)).
    Proof. The Lemma holds for n = 1. Suppose the Lemma holds for some n. The (n+1)th multiplicand is (n+1)(n+3)/(n+2)^2. Thus, the (n+1)th partial product is
    [(n+2)/(2(n+1))][(n+1)(n+3)/(n+2)^2] = (n+3)/(2(n+2)).
    proving the Lemma by induction.
    The limit of the partial products is now clearly 1/2.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 12 ชั่วโมงที่ผ่านมา +2

    3/4*8/9*15/16*24/25*35/36*…=0.5=1/2

  • @Blaqjaqshellaq
    @Blaqjaqshellaq 9 ชั่วโมงที่ผ่านมา +1

    3/4=1/2 + 1/4
    (3/4)*(8/9)=2/3=1/2 + 1/6
    (3/4)*(8/9)*(15/16)=5/8=1/2 + 1/8
    (3/4)*(8/9)*(15/16)*(24/25)=3/5=1/2 + 1/10
    See the pattern? Each product is an entry in the series (1/2)*(1+1/n), which converges at 1/2.

    • @dantallman5345
      @dantallman5345 7 ชั่วโมงที่ผ่านมา

      Nice. This is simplest and clearest imo.

  • @Qermaq
    @Qermaq 8 ชั่วโมงที่ผ่านมา

    Interestingly, the product of (n^2 - 1)/(n^2) from n = 2 to k works out to be (k+1)/(2k). From this, it's simple to see that as k tends to infinity the +1 fades away and we get (k)/(2k) or 1/2.

    • @SyberMath
      @SyberMath  7 ชั่วโมงที่ผ่านมา

      Good point!

  • @scottleung9587
    @scottleung9587 8 ชั่วโมงที่ผ่านมา

    Nice!

    • @SyberMath
      @SyberMath  7 ชั่วโมงที่ผ่านมา +1

      Thanks!

  • @dixonblog
    @dixonblog 3 ชั่วโมงที่ผ่านมา

    Wolfram Alpha prompt:
    product[ (n^2-1)/(n^2), {n,2,∞}]

  • @dan-florinchereches4892
    @dan-florinchereches4892 12 ชั่วโมงที่ผ่านมา +1

    I would say the for of the product is π (i^2-1)/i^2=π (i-1)(I+1)/I^2
    For I=2 up to N for each product i-1 in numerator will simplify with an i-1 in the previous denominator and I+1 with an I+1 in the next denominator so by simplifying
    π=1/2*(n+1)/N

  • @ignaciodecastrofondevila2456
    @ignaciodecastrofondevila2456 7 ชั่วโมงที่ผ่านมา

    In 07:37 you state that Product[f(n)*g(n)]=Product[f(n)]*Product[g(n)], but this is only true on the condition that such products exist, which you have not proved previusly.
    In this case, proving the existence of Product(n-1/n) is easy (factors less than 1), but proving the existence of Product(n+1/n) is not so easy.
    Thank you very much for your video, wonderful as always.

  • @russellsharpe288
    @russellsharpe288 4 ชั่วโมงที่ผ่านมา

    The partial products of Π((n+1)/n) starting at n = 2 are 3/2, (3/2).(4/3) = 2, (3/2).(4/3).(5/4) = 5/2, (3/2).(4/3).(5/4).(6/5) = 3 and in general the partial product up to n = N is (N+1)/2. Clearly this diverges as N -> infinity, and is certainly not equal to 1/2 as you seem to think.
    Similarly the partial products of Π(n/(n+1)) are 1/2, (1/2)(2/3) = 1/3, (1/2)(2/3)(3/4) = 1/4 and the infinite product converges to zero. So your calculation at the end becomes zero x infinity: undefined.
    I daresay you cannot rearrange terms of an infinite product as you have here unless the corresponding infinite sum (taking logarithms termwise) is absolutely convergent (Riemann Rearrangement Theorem).

  • @faeancestor
    @faeancestor 36 นาทีที่ผ่านมา +1

    calm down

  • @giuseppemalaguti435
    @giuseppemalaguti435 10 ชั่วโมงที่ผ่านมา +1

    S=Π(k^2-1)/k^2..(k=2,3...)..applico ln .lnS=Σln((k^2-1)/k^2)=Σln(k^2-1)-Σlnk^2=Σln(k+1)+Σln(k-1)-2Σlnk=(ln3+ln1-2ln2)+(ln4+ln2-2ln3)+(ln5+ln3-2ln4)+(ln6+ln4-2ln5)....=ln1-ln2=-ln2=ln(1/2)...S=1/2

    • @davidbelgardt3775
      @davidbelgardt3775 9 ชั่วโมงที่ผ่านมา +1

      Thaty the way i did it to.

    • @giuseppemalaguti435
      @giuseppemalaguti435 9 ชั่วโมงที่ผ่านมา

      ​@@davidbelgardt3775❤

    • @giuseppemalaguti435
      @giuseppemalaguti435 9 ชั่วโมงที่ผ่านมา

      ​@@davidbelgardt3775👍

  • @hrk992
    @hrk992 7 ชั่วโมงที่ผ่านมา

    prod[(k²-1)/k²]; k=2...n
    = prod[(k²-1)]/(n!²); k=2...n
    = prod[(k-1)(k+1)]/(n!²); k=2...n
    = (n-1)!(n+1)!/(2n!²)
    = 1/2+1/(2n)
    lim[1/2+1/(2n)]; n → oo
    = 1/2