Картофельная проблема: что такое напряжения?

แชร์
ฝัง
  • เผยแพร่เมื่อ 8 พ.ย. 2024

ความคิดเห็น • 16

  • @OlegLee100
    @OlegLee100 ปีที่แล้ว +1

    Анатолий Юрьевич, спасибо большое за разъяснение "элементарных" вопросов! О них постоянно спотыкаешься при самостоятельном изучении любой темы. Возможно, для специалистов, получивших образование в инженерной геологии, механике грунтов, это все и так понятно, но для людей, заинтересовавшихся этой наукой, "картофельный " курс лекций по той же теории упругости был бы весьма кстати.

    • @indepgeo
      @indepgeo  ปีที่แล้ว

      Рад, что материал оказался полезен )))
      Хотя я был уверен, что видеокурс по механике и так уже «картофельнее некуда», но похоже, что еще есть куда двигаться )

    • @OlegLee100
      @OlegLee100 ปีที่แล้ว

      @@indepgeo да, очень полезный курс получился по механике! Однако он опирается на теории упругости, пластичности, ползучести. И тем, кто их не изучал, опереться не на что. А фундамент, как я уже понял, основа основ)

  • @Andrey_1981
    @Andrey_1981 ปีที่แล้ว +1

    Здравствуйте! С большим интересом смотрю Ваши видео лекции. В данный момент изучаю по книге зарубежного автора Muni Budhu теорию механики грунтов и в частности раздел одномерной консолидации мелкозернистых грунтов, и вот вспомнил про книгу профессора Маслова Н.Н. "Основы механики грунтов и инженерной геологии" 1968 года, где профессор на стр. 363-367 достаточно убедительно оспаривает теорию порового давления К. Терцаги. Очень хотелось бы узнать Ваше авторитетное мнение по данному такому неоднозначному вопросу, описанному в книге профессора Маслова Н.Н. на стр. 363-367

    • @indepgeo
      @indepgeo  ปีที่แล้ว +1

      Здравствуйте!
      Благодарю за высокую оценку )
      Неоднократно доказывалось, что теория фильтрационной консолидации в версии Терцаги содержит кучу условностей, и часто противоречит экспериментальным данным.
      Скемптон, Бишоп, Био предлагали в 50х годах свои решения, учитывающие сжимаемость поровой жидкости. З.Г. Тер-Мартиросян по этой теме докторскую диссертацию защищал.
      Есть книга великолепная - Цытович H.A., Зарецкий Ю.К., Малышев М.В., Абелев М.Ю., Тер-Мартиросян З.Г. Прогноз скорости осадок оснований сооружений. М.: Стройиздат, 1967.
      У меня только в бумаге, к сожалению, есть. Там отлично по полочкам все разложено.
      Но я скептически отношусь к теории Терцаги в наше время. С научной точки зрения очень много натяжек. С инженерной - приемлемо, и «врет» в запас.

  • @supersprinter1001
    @supersprinter1001 ปีที่แล้ว

    👍👍👍👏👏👏👏👏👏💪

  • @im0p03k0
    @im0p03k0 ปีที่แล้ว +1

    Сопромат на картофеле, так сказать😀Учился по Александрову- там иллюстрация не вводит в заблуждение.

    • @indepgeo
      @indepgeo  ปีที่แล้ว

      Да, там хорошая картинка со стержнем (рис. 2.1 в редакции 2003 года) - но это сопромат, а геологи его не изучают совсем. Им надо как-то сразу дать теорию упругости, пространственное напряженное состояние.

    • @cynic3859
      @cynic3859 ปีที่แล้ว

      Пардоньте, но где здесь *сопромат* ? Банальные векторы, приложенные к сферическому коню.

    • @indepgeo
      @indepgeo  ปีที่แล้ว

      @@cynic3859я про Александрова - там сопромат )

  • @ДмитрийСирота-в2ъ
    @ДмитрийСирота-в2ъ ปีที่แล้ว

    Напряжение - это сила, размазанная или распределённая по площади (длине) рассматриваемого сечения. Соответственно, и знак менять эта сила не может, ведь расчёт величины напряжений производится по формуле: напряжение = сила/меру.

    • @indepgeo
      @indepgeo  ปีที่แล้ว

      Не уверен, что одно из другого следует. Сила это вектор, она может иметь знак в зависимости от выбора положительного направления оси. Значит, знак будет и у напряжений.
      Понятно, что в каждом конкретном сечении, например, растянутого стержня всегда есть два противоположно направленных вектора )
      Вопрос в том, что пытаются сделать эти векторы - разорвать два соседних сечения или, наоборот, сблизить.

    • @ДмитрийСирота-в2ъ
      @ДмитрийСирота-в2ъ ปีที่แล้ว

      ​@@indepgeo, зависимость знака сил от направления осей - это правило знаков теоретической механики.
      В сопротивлении материалов и теории упругости это правило модернизируется с учётом возможных деформаций: растягивающие силы и напряжения положительны, сжимающие - отрицательны. Куда при этом ось направлена и вообще она есть или нет - без разницы.
      ***************
      То, что вы написали во втором абзаце - странно. В методе сечений рассматриваются силы с одной из сторон сечения. Соответственно, никаких двух противоположных направлений одновременно не существует. Сумма сил и напряжений либо положительна, либо отрицательна с учётом правила знаков.

    • @indepgeo
      @indepgeo  ปีที่แล้ว

      @@ДмитрийСирота-в2ъя, видимо, неудачно сформулировал - но по-моему мы оба написали одно и то же.
      Изначальный посыл всего ролика в том, что при действии на тело растягивающих усилий в теле будут возникать растягивающие напряжения. Все предельно просто.

    • @ДмитрийСирота-в2ъ
      @ДмитрийСирота-в2ъ ปีที่แล้ว

      @@indepgeo ну да, именно так :)

    • @indepgeo
      @indepgeo  ปีที่แล้ว

      @@Mike_VM Так, хорошо, тогда вопрос: что произойдет после снятия магнитного поля? Тело расширится до исходных размеров? Какая сила в данном случае совершит работу по восстановлению размеров? Вот это как раз и будет сила упругости, я не спорю. Никакой внешней силы для уравновешивания не потребуется - магнитное поле в данном случае выполняет эту роль.
      Но только - по-прежнему - тезис, что "напряжения - это силы упругости" ничем не подтвержден. Пришлите где почитать, я с радостью с Вами соглашусь. Пока что ни в одном доступном мне авторитетном учебнике я этой фразы не видел.