what function satisfies these conditions??

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024

ความคิดเห็น • 29

  • @TheEternalVortex42
    @TheEternalVortex42 11 ชั่วโมงที่ผ่านมา +8

    Intuitively, the second condition seems designed for g(x) = e^(-x) to satisfy it (since you get equality). But with that g(x) you would get the limit e^x g(x) = 1, not 0. And if pick a g(x) that decreases any faster than e^(-x) then we won't satisfy the integral inequality, because it will decrease too quickly. Essentially, the first inequality says the function must decrease *faster* than an exponential, while the second inequality says it must decrease *no faster* than an exponential. These are incompatible so we get no solution other than the trivial 0 constant function.

  • @hugh081
    @hugh081 9 ชั่วโมงที่ผ่านมา +8

    Ugh, 15 minutes just to confirm that the only solution is the trivial solution, the zero function.

    • @redpepper74
      @redpepper74 4 ชั่วโมงที่ผ่านมา +1

      Not a good place to stop 😔

  • @burk314
    @burk314 14 ชั่วโมงที่ผ่านมา +17

    The first condition is wrong in the thumbnail. It's x->0 in the video and x->infinty in the thumbnail. Very different conditions there.

  • @krisbrandenberger544
    @krisbrandenberger544 16 ชั่วโมงที่ผ่านมา +6

    @ 12:42 Should be -e^x*G(x), not -G(x).

  • @cantcommute
    @cantcommute 10 ชั่วโมงที่ผ่านมา +6

    yet again a typo in the thumbnail made me click on the video. is this intentional? lol

  • @pizza8725
    @pizza8725 12 ชั่วโมงที่ผ่านมา +3

    Why is the thumbnail diferent?

    • @juliopuerta5049
      @juliopuerta5049 12 ชั่วโมงที่ผ่านมา +8

      He has been doing this for some time. This makes him have more comments/interactions pointing out the mistake. Dirty way, though...

  • @TheElihs
    @TheElihs 6 ชั่วโมงที่ผ่านมา

    Once you change variables to g(x) instead of f(x), you're basically just reproving the integral version of Gronwall's inequality.

  • @BarryRowlingsonBaz
    @BarryRowlingsonBaz ชั่วโมงที่ผ่านมา

    All that work for identically nothing.

  • @goodplacetostop2973
    @goodplacetostop2973 17 ชั่วโมงที่ผ่านมา +14

    😡

    • @titan1235813
      @titan1235813 14 ชั่วโมงที่ผ่านมา +3

      Yes: 😡!!!

    • @diniaadil6154
      @diniaadil6154 13 ชั่วโมงที่ผ่านมา +2

      Instructions unclear, I kept looping the video

    • @tomholroyd7519
      @tomholroyd7519 8 ชั่วโมงที่ผ่านมา +2

      No effort November is over!

  • @jackthisout9480
    @jackthisout9480 17 ชั่วโมงที่ผ่านมา +1

    When a function is simply zero, it can’t be a function of x. It’s an inconsistent way to describe what is factually a non-function.

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 17 ชั่วโมงที่ผ่านมา +16

      Why? What about f(x)=0•x?

    • @whonyx6680
      @whonyx6680 16 ชั่วโมงที่ผ่านมา +32

      blud does not know what a function is.

    • @Iron_uksus
      @Iron_uksus 16 ชั่วโมงที่ผ่านมา +22

      Why tho? Function is an injective mapping from one set to another. In this case, it's a mapping from R to {0}

    • @self8ting
      @self8ting 16 ชั่วโมงที่ผ่านมา +15

      You do not know what a function is. Here's the definition (from Wikipedia) : "In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y.".
      Then if you understand the definition you just have to set Y to { 0 } to know that your statement is wrong.
      Please stop trying to sound smart in front of people you do not even know when you do not understand the basics.
      We are all here to learn because Maths are beautiful ! Cheers.

    • @prathamchadha09
      @prathamchadha09 16 ชั่วโมงที่ผ่านมา +3

      @self8ting that's the definition of a bijective function, not a general function. f(x)=0 is a function indeed, the zero function. by that definition, f(x)=cos(x) isn't a function either, please review that you copied the correct definition from wiki