UWAGA, BŁĄD! Oczywiście nierówność trójkąta na ilustracji w 18:27 powinna być w drugą stronę i osłabiona: c ≤ a + b (równość też jest dopuszczalna - wtedy trójkąt jest po prostu "zdegenerowany"). Dziękuję za czujność! TM
Dla zastosowań szkolnych definiuje się nierówności trójkąta jako zestaw 3 ostrych nierówności (długość każdego boku jest mniejsza od sumy pozostałych). Albo wygodnie jako jedną ostrą nierówność: W trójkącie długość najdłuższego boku jest mniejsza od sumy pozostałych boków (pozostałe 2 nierówności wynikają z tej jednej). Jednak rzeczywiście, w szerszym ujęciu - w przestrzeniach unormowanych nierówność ta wynika z nierówności Cauchy’ego-Schwarza i wygodnie, dla celów praktycznych osłabić ją i mówić, że "=" jest, gdy 3 punkty trójkąta są współliniowe, trójkąt "degeneruje się" i już tak naprawdę nie jest trójkątem (bo, aby był - 3 punkty, jego wierzchołki, muszą być niewspóliniowe - potrzebna jest płaszczyzna). W jeszcze szerszym ujęciu - w przestrzeniach metrycznych - nierówność trójkąta z definicji także jest osłabiona! :)
do nierówności trójkąta dodał bym szybkie wyjaśnienie: że zakładamu tu że odległosć z X do Y liczona bezpośrednio nigdy nie będzędzie większa od liczonej pośrednio poprzez pkt Z.
@@ppkbtb no właśnie nie. Jeśli komuś ciężko zrozumieć sens filmu, to szkoda, ale na studenta tego Pana się nie nadaje. Przecież nie każdy musi nim być. Za to przestrzeń rozumienia/wyobraźni jaką ten Pan rozwija jest nieoceniona.
@@jakubb3685 to weź i powtórz sobie, pod nosem, co mówił :) A pomyśl że mówił 1.5h przez 4 dni w tygodniu, przez pół roku. Oczywiście na matematyce byle kto nie siedzi, ale jako student, posiąść wiedzę T. i zdać.. noooo... czea przysiąść :)
No przecież akurat tego pana na Youtubie nie brakuje - można słuchać do woli, w dowolnym momencie zrobić sobie przerwę, wyjść z wykładu 8 dokończyć później - nie widzę powodów do zazdrości 😉
@@tomasz.7983 Tu nie chodzi o tego pana czy nie, topologia (czy nawet wstęp do topologii z metryką) wykładana nawet przez takiego fajnego gościa jak on jest przewalona
Wspaniała seria! Nauka opowiedziana w Pana wykonaniu jest ciekawa i zrozumiała. Poproszę kolejne sezony o matematyce, informatyce, fizyce, astrofizyce, mechanice kwantowej i jeszcze więcej. Pokolenia słuchające Pana wykładów, czy to tu na YT, czy na uczelni, to szczęściarze, bo takiej wiedzy i tak przekazywanej nie zdobywa się łatwo. Jak dla mnie poziom nauczania jest z najwyższej półki porównywalny do takich gigantów jak Richard Feynman. Dziękuję, pozdrawiam i z niecierpliwością czekam na więcej 🙂
Panie Tomaszu - rewelacyjny wykład. Wielu naukowców zna temat swojego wykładu w sposób dogłębny. Niewielu potrafi jasno i po polsku przekazać tę wiedzę. Bez stękania, powtórzeń i tym podobnych "smaczków" Pan ma talent dobrego wykładowcy. Bardzo dziękuje za ten i inne odcinki i proszę o jeszcze.
Będzie trochę egzaltacji ale skoro już Pan prowadzi jeden z najfajniejszych zakątków popularnonaukowych w CAŁYM internecie to przyjął Pan na siebie pewne zobowiązanie i nie może NAS Pan opuścić np. tylko po 20 odcinkach, proszę tej serii nie kończyć, najlepiej nigdy a jeżeli już to po 100 odcinkach gdzieś za 20 lat.
Zalezy. Dla 99% ludzi zasmiecanie glowy pierdolami, ktore nigdy sie nie przydadza. Dlatego uwazam, system edukacji jest do niczego. Mamy za duzo "nauczycieli", a ci co sa zarabiaja rowniez za duzo.
Taki wykład daje przynajmniej poczucie rozumienia podstaw, którego mnie na studiach brakowało, gdy wykład prowadził skądinąd bardzo sympatyczny profesor o dużej renomie. Jeśli rozumiesz podstawy to masz ochotę zrozumieć więcej. Jeśli pierwszy wykład Cie skosi i czujesz się jak krawcowa w elektrowni jądrowej to lepiej szybko rzucić studia i nie tracić czasu. Ja tej odwagi nie miałem, skończyłem studia z uznaniem komisji na obronie pracy magisterskiej i równocześnie z gorzkim przekonaniem, że rozumiem tylko ułamek pewnym zagadnień, którymi wykładowcy operowali bardzo często. Na przykład rachunek tensorowy. Dzisiaj mamy TH-cam, fora dyskusyjne, jest inaczej. Wtedy była czytelnia ze skryptami zapisanymi skomplikowanymi jak dla mnie formułami matematycznymi bez objaśnień na poziomie prezentowanym przez pana Tomka z materiału.
Jakże trudno wnikać mi w myślenie abstrakcyjne. Dzięki utalentowanemu przewodnikowi jednak udaje się. Dziękuję. W moim wieku to wspaniała przygoda. Dziękuję.😀
18:08 Jest to zgoła błędne założenie, oto dowód. Na Czukotce rybacy złapali wieloryba. Mierzony od pyska do ogona miał 30 metrów, a od ogona do pyska 50. Zdziwieni tym faktem wysłali zapytanie do wydziału matematyki Uniwersytetu Łomonosowa. Po dwóch miesiącach przyszła odpowiedź: - Towarzysze, wszystko jest w jak najlepszym porządku, nauka radziecka zna takie przypadki. Na przykład od wtorku do piątku są 2 dni, a od piątku do wtorku 3.
Tak, dziękujemy, robi się bardzo ciekawie i kto wie, jakie "cuda" nas czekają gdy zaczną się wycieczki do np. geometrii obowiązującej dla fal i czasu w przestrzeni kosmicznej. Pozostając na Ziemi ciekawe. czy to tylko marginalna wycieczka do odwzorowania Mercatora podstawowego w nawigacji morskiej, gdzie w geometrii na sferze najprostsza figura (o niezerowej powierzchni) to dwukąt.
"ja cię sunę". Jak ja bym chciał aby tak wykładać matematykę kiedy byłem w szkole. Przecież to co się robi w szkole z matematyką to wręcz zbrodnia. Nic dziwnego, że prawie nikt się tego nie chce uczyć. Jak otwieram podręcznik do matmy dla moich dzieciaków to włosy dęba mi stają. Niby toto kolorowe, mnóstwo przykładów, ale na dłuższą metę pojawia się pytanie..... Po co mi to? I na pytanie tam odpowiedzi nie ma :-(. I to jest straszne bo potrzebne jest aby rozumieć ten "dziwny" świat, ale znowu pojawia się pytanie.... po co rozumieć ten dziwny świat? No i leżymy. Super fajny materiał!!!!!!!
Moja prośba to opisanie dokładnie na czym polegają pochodne, czym są, skąd się wzięły, co oznaczają oraz to samo dla całek nieoznaczonych, oznaczonych (podwójnych potrójnych etc.) oraz równań różniczkowych. Pomoże to na pewno studentom uczelni technicznych zrozumieć w końcu te zagadnienia, a nie "nauczyć" się na pamięć z książek i klepać zadania bez rozumienia tychże.
Az sie lezka w oku kreci. Na pierwszym wykladzie z analizy na I-szym roku nie bylo takiego wstepu jak tu zeby ludzie skumali co i jak, tylko od razu z grubej rury- profesor zaczyna od 'narysujmy okrag w jakiejstam przestrzeni metrycznej' i rysuje kwadrat, ludzie patrza po sobie, a kazdy ma strach oraz uczucie wtf w oczach, cos pieknego. Chociaz juz wiekszosc z tego zapomnialem (na informatyce bylem a nie matematyce) to zawsze milo wspominam te przestrzenie metryczne.
Zaczynanie kursu analizy od przestrzeni metrycznych uważam za błąd nadgorliwości. Taki maksymalizm w zakresie tematycznym - typowy dla źródeł francuskich - jest dobry do podsumowań, a nie na start, nawet jeśli to kurs dla matematyków. Nie lubię zaczynania analizy od czego innego niż funkcje jednej zmiennej rzeczywistej.
Takie pokazówy, były w moim przekonaniu swego rodzaju filtrem, dzięki któremu wykładowca orientował się czy w jego zasięgu znajduje się osobnik, z którym będzie mógł popracować. U mnie po pierwszym roku poleciało chyba ze 30-40% pogłowia, już dokładnie nie pamiętam. Niektórzy się wcześniej wystraszyli, inni oblali egzaminy. Problem polega na tym, że nawet mając wielką ochotę nauczyć się matematyki na wyższym poziomie można było nie podołać. Od razu trzeba było być dobrym. Miałem kilku dobrych wykładowców, którzy świetnie wyjaśniali zagadnienia od podstaw, ale bywało tak, że wykładowca nie miał żadnego interesu w tym, żeby tych średniaków czegoś nauczyć. Bardzo dobrze pamiętam te bezsensownie przepalone godziny.
Dzień dobry, mam pytanie odnośnie odcinka serii "Zaczijmy od zera" o potęgowaniu i "najpiękniejszym wzorze matematyki". Zostały tam przedstawione reguły działania naturalnych, całkowitych, wymiernych, rzeczywistych i zespolonych wykładników potęg. Czy idąc dalej wykładnikiem potęgi może być kwaternion, oktonion czy inna liczba hiperzespolona? Jeśli tak to prosiłbym o wskazanie jakichś źródeł, w których mógłbym na ten temat poczytać.
Funkcję wykładniczą można zdefiniować dla szerszego zbioru (ekstrapolować) przez szereg potęgowy, a do niego jak najbardziej można podstawiać obiekty hiperzespolone - których nie lubię nazywać liczbami. Rozważa się nawet potęgi o wykładniku macierzowym; Grant Sanderson (3blue1brown) ma o tym filmik.
A co jeżeli by uznać ze odległość między punktami nie jest symetryczna lecz zależna od prędkości przemierzania tych odległości, tak jak uznaje się dylatację czasu podczas podrózowania, dążąc do prędkości swiatła. Dochodzimy do tego, iż punkty są w tym samym miejscu.
Pytanko: Czy na podstawie dwóch punktów można wykreślić krzywą? Jaka jest różnica między krzywą, a prostą? Będę wdzięczny za możliwie prostą odpowiedź :P
Chyba trochę zbyt ogólne to pytanie, dobrze byłoby je doprecyzować... Tak ogólnie można chyba tylko odpowiedzieć, że te różnice (między krzywą a prostą) przejawiają się na bardzo różnych poziomach. Przykładowo: 1. Odcinek łączący dwa punkty definiuje się jako najkrótszą z wszystkich krzywych te dwa punkty łączące. Dla dowolnej metryki taki odcinek istnieje (najwyżej) jeden, ale dla nieeuklidesowych nie muszą one być proste. 2. Prosta w przestrzeni kartezjańskiej opisuje się równaniem ogólnym Ax+By+C=0, gdzie A, B i C to parametry będące liczbami rzeczywistymi. Jak widać jest to równanie bardzo proste. Nie dość, że wielomianowe, to jeszcze stopnia 1. Dla innych równań będziemy dostawać inne figury.
Przestrzeń nie ma swojej definicji (przynajmniej nie w oczach pierwotnie tworzących to pojęcie, współcześnie pewnie teoriokategoryści mają coś bardzo konkretnego na myśli mówiąc przestrzeń), ale jest to w zasadzie zbiór ze strukturą, większość przestrzeni to nadbudówki na przestrzeniach wektorowych.
Nie zapominajmy o metryce w muzyce. Niech pierwszy rzuci pałeczką perkusyjną, kto nie kojarzy odległości i długości w zapisie nutowym. Nie ma problemu, aby policzyć pole powierzchni "Ody do radości" odpowiednio definiując metrykę dla zapisu pod kluczem wiolinowym. I choć wydaje się to absurdalne - jak znam matematyków, to już dawno ktoś to zrobił i to na kilkanaście sposobów.
Pozdrawiam twórcę jednego z najlepszych i najciekawszych cyklów na polskim TH-cam. Gdybym był kobietą to bym zrobił nawet grr. Co tu się odeuklidesowia!
UWAGA, BŁĄD! Oczywiście nierówność trójkąta na ilustracji w 18:27 powinna być w drugą stronę i osłabiona: c ≤ a + b (równość też jest dopuszczalna - wtedy trójkąt jest po prostu "zdegenerowany"). Dziękuję za czujność! TM
Dla zastosowań szkolnych definiuje się nierówności trójkąta jako zestaw 3 ostrych nierówności (długość każdego boku jest mniejsza od sumy pozostałych). Albo wygodnie jako jedną ostrą nierówność: W trójkącie długość najdłuższego boku jest mniejsza od sumy pozostałych boków (pozostałe 2 nierówności wynikają z tej jednej). Jednak rzeczywiście, w szerszym ujęciu - w przestrzeniach unormowanych nierówność ta wynika z nierówności Cauchy’ego-Schwarza i wygodnie, dla celów praktycznych osłabić ją i mówić, że "=" jest, gdy 3 punkty trójkąta są współliniowe, trójkąt "degeneruje się" i już tak naprawdę nie jest trójkątem (bo, aby był - 3 punkty, jego wierzchołki, muszą być niewspóliniowe - potrzebna jest płaszczyzna). W jeszcze szerszym ujęciu - w przestrzeniach metrycznych - nierówność trójkąta z definicji także jest osłabiona! :)
do nierówności trójkąta dodał bym szybkie wyjaśnienie: że zakładamu tu że odległosć z X do Y liczona bezpośrednio nigdy nie będzędzie większa od liczonej pośrednio poprzez pkt Z.
@@JBMJaworski Zdarzyło mi się wygrać turniej tańca. Zatem do "zastosowań szkolnych" sprawdź - Supernova AT 2021vpg . Może szkołą zapunktujecie kiedyś
Geometria hiperboliczna ładnie jest pokazana na filmach kanału Hyperbolica na YT.
To taki celowy błąd dla zaspokojenia ego co bardziej spostrzegawczych studentów.
Niezmiennie zazdroszczę studentom pana doktora
gorzej jak trzeba przed nim egzamin zdawać ;-)
@@ppkbtb no właśnie nie. Jeśli komuś ciężko zrozumieć sens filmu, to szkoda, ale na studenta tego Pana się nie nadaje. Przecież nie każdy musi nim być. Za to przestrzeń rozumienia/wyobraźni jaką ten Pan rozwija jest nieoceniona.
@@jakubb3685 to weź i powtórz sobie, pod nosem, co mówił :) A pomyśl że mówił 1.5h przez 4 dni w tygodniu, przez pół roku. Oczywiście na matematyce byle kto nie siedzi, ale jako student, posiąść wiedzę T. i zdać.. noooo... czea przysiąść :)
No przecież akurat tego pana na Youtubie nie brakuje - można słuchać do woli, w dowolnym momencie zrobić sobie przerwę, wyjść z wykładu 8 dokończyć później - nie widzę powodów do zazdrości 😉
@@tomasz.7983 Tu nie chodzi o tego pana czy nie, topologia (czy nawet wstęp do topologii z metryką) wykładana nawet przez takiego fajnego gościa jak on jest przewalona
Cudowny dar opowiadania. Dużo treningu na studentach wyczuwam. ❤❤❤
Tomasz jest niezwyciężony!
Wspaniała seria! Nauka opowiedziana w Pana wykonaniu jest ciekawa i zrozumiała. Poproszę kolejne sezony o matematyce, informatyce, fizyce, astrofizyce, mechanice kwantowej i jeszcze więcej. Pokolenia słuchające Pana wykładów, czy to tu na YT, czy na uczelni, to szczęściarze, bo takiej wiedzy i tak przekazywanej nie zdobywa się łatwo. Jak dla mnie poziom nauczania jest z najwyższej półki porównywalny do takich gigantów jak Richard Feynman. Dziękuję, pozdrawiam i z niecierpliwością czekam na więcej 🙂
Panie Tomaszu - rewelacyjny wykład. Wielu naukowców zna temat swojego wykładu w sposób dogłębny. Niewielu potrafi jasno i po polsku przekazać tę wiedzę. Bez stękania, powtórzeń i tym podobnych "smaczków" Pan ma talent dobrego wykładowcy. Bardzo dziękuje za ten i inne odcinki i proszę o jeszcze.
Będzie trochę egzaltacji ale skoro już Pan prowadzi jeden z najfajniejszych zakątków popularnonaukowych w CAŁYM internecie to przyjął Pan na siebie pewne zobowiązanie i nie może NAS Pan opuścić np. tylko po 20 odcinkach, proszę tej serii nie kończyć, najlepiej nigdy a jeżeli już to po 100 odcinkach gdzieś za 20 lat.
to objaw jakiejś choroby sierocej?
@@wujciowariatuncio5702 wyraz uznania dla dobrego twórcy.
Zalezy. Dla 99% ludzi zasmiecanie glowy pierdolami, ktore nigdy sie nie przydadza. Dlatego uwazam, system edukacji jest do niczego. Mamy za duzo "nauczycieli", a ci co sa zarabiaja rowniez za duzo.
@@arturarrbor aha, okej :-] bez urazy
Taki wykład daje przynajmniej poczucie rozumienia podstaw, którego mnie na studiach brakowało, gdy wykład prowadził skądinąd bardzo sympatyczny profesor o dużej renomie. Jeśli rozumiesz podstawy to masz ochotę zrozumieć więcej. Jeśli pierwszy wykład Cie skosi i czujesz się jak krawcowa w elektrowni jądrowej to lepiej szybko rzucić studia i nie tracić czasu. Ja tej odwagi nie miałem, skończyłem studia z uznaniem komisji na obronie pracy magisterskiej i równocześnie z gorzkim przekonaniem, że rozumiem tylko ułamek pewnym zagadnień, którymi wykładowcy operowali bardzo często. Na przykład rachunek tensorowy. Dzisiaj mamy TH-cam, fora dyskusyjne, jest inaczej. Wtedy była czytelnia ze skryptami zapisanymi skomplikowanymi jak dla mnie formułami matematycznymi bez objaśnień na poziomie prezentowanym przez pana Tomka z materiału.
Odkrywam matematykę na nowo po blisko 20 latach od studiów. Bardzo dziękuję.
i tak po 20 latach ktoś wytłumaczył mi co to jest metryka :D
Też mam takie odczucie😀
Wspaniała seria, uczta dla oczu, uszu a przede wszystkim umysłu! Dziękuję!
Jestem pod wrażeniem pana serii.
Obejrzałem dziś wszystkie odcinki aż do powyższego.
Dziękuję
O wrócił mistrz :)
To ostatnia seria, która trzyma mnie przy tym kanale, perełka wśród badziewia, którym nas ostatnio zallewacie.
Jakże trudno wnikać mi w myślenie abstrakcyjne. Dzięki utalentowanemu przewodnikowi jednak udaje się. Dziękuję. W moim wieku to wspaniała przygoda. Dziękuję.😀
Kolejny odcinek najlepszej serii na YT. Dzięki!
No nareeeeszcie! Jest dr Tomasz oraz jego wykłady. Ależ się naczekałem.....
Super odcinek, dziękujemy i czekamy na więcej!!!
Lubię sobie posłuchać do śniadania tych wykładów
Super seria. Piękne zbalansowanie formy i treści
Złoto. Czekamy na kolejne części.
Łapa w górę bez słuchania:)
Hmm, napisy niedostępne 🤔
==>
czytanie z ruchu warg?👀
Edit. Słabość do sucharów
¯\_(ツ)_/¯
Super seria ;)
18:08 Jest to zgoła błędne założenie, oto dowód.
Na Czukotce rybacy złapali wieloryba. Mierzony od pyska do ogona miał 30 metrów, a od ogona do pyska 50.
Zdziwieni tym faktem wysłali zapytanie do wydziału matematyki Uniwersytetu Łomonosowa.
Po dwóch miesiącach przyszła odpowiedź:
- Towarzysze, wszystko jest w jak najlepszym porządku, nauka radziecka zna takie przypadki. Na przykład od wtorku do piątku są 2 dni, a od piątku do wtorku 3.
Chociaż matematykę zdawałem 30 lat temu, to z panem doktorem bardzo chętnie ją powtarzam, od pierwszego odcinka - od liczb naturalnych.
Nowa seria! Świetnie, po dzisiejszym odcinku widzę, że będzie bardzo ciekawa
Super przedstawione :-)
Szacun i pozdrowienia za elegancki wykładzik✋
Czekalem na kolejny odcinek😍
Tak, dziękujemy, robi się bardzo ciekawie i kto wie, jakie "cuda" nas czekają gdy zaczną się wycieczki do np. geometrii obowiązującej dla fal i czasu w przestrzeni kosmicznej. Pozostając na Ziemi ciekawe. czy to tylko marginalna wycieczka do odwzorowania Mercatora podstawowego w nawigacji morskiej, gdzie w geometrii na sferze najprostsza figura (o niezerowej powierzchni) to dwukąt.
Bardzo fajnie pan opowiada o tak trudnych zagadnieniach ❤
Strtrasznie duuugo kazał Pan czekać na kolejne wspaniałe odcinki. WSTYD xD.
Jezu jak się cieszę
Z tych króciutkich wskrzeszeń
Kiedy pełną głowę mam
Znowu mogę myśleć
Trochę jakby ściślej
Kiedy następna część bo bardzo fajnie się to słucha i ogląda?
Nareszcie kolejny odcinek
Internauci parę (X,d) nazywają śmieszną miną 19:16
Coś wspaniałego!
Panie Tomaszu będzie w tej serii o Przestrzeniach Banacha? Bo już się nie mogę doczekać.
0:18 cyrkiel i ekierka. Piekne😂....
"ja cię sunę". Jak ja bym chciał aby tak wykładać matematykę kiedy byłem w szkole. Przecież to co się robi w szkole z matematyką to wręcz zbrodnia. Nic dziwnego, że prawie nikt się tego nie chce uczyć. Jak otwieram podręcznik do matmy dla moich dzieciaków to włosy dęba mi stają. Niby toto kolorowe, mnóstwo przykładów, ale na dłuższą metę pojawia się pytanie..... Po co mi to? I na pytanie tam odpowiedzi nie ma :-(. I to jest straszne bo potrzebne jest aby rozumieć ten "dziwny" świat, ale znowu pojawia się pytanie.... po co rozumieć ten dziwny świat? No i leżymy. Super fajny materiał!!!!!!!
Wspaniała matematyczna historia!
Oj gdyby to euklides zobaczył, zwątpił by w swój geniusz
Euklides przewraca sie w swojej katakumbie :D
Brawo
Czekam i czekam na kolejne odcinki.Pan Tomasz musi być bardzo zapracowany , ale mam nadzieję ,że o nas nie zapomniał .
Super program!
Tak długo czekałem na kolejną cześć i oto jest i ona tuż przed świętami, niby prezent na Wielkanoc.
Znowu mnie zatkało. Dziękuję!
Jak zwykle - super !
Dziękuje :) bardzo lubię tą serie :)
Super, moja ulubiona seria
Moja prośba to opisanie dokładnie na czym polegają pochodne, czym są, skąd się wzięły, co oznaczają oraz to samo dla całek nieoznaczonych, oznaczonych (podwójnych potrójnych etc.) oraz równań różniczkowych. Pomoże to na pewno studentom uczelni technicznych zrozumieć w końcu te zagadnienia, a nie "nauczyć" się na pamięć z książek i klepać zadania bez rozumienia tychże.
świetny materiał jak zawsze!
Az sie lezka w oku kreci. Na pierwszym wykladzie z analizy na I-szym roku nie bylo takiego wstepu jak tu zeby ludzie skumali co i jak, tylko od razu z grubej rury- profesor zaczyna od 'narysujmy okrag w jakiejstam przestrzeni metrycznej' i rysuje kwadrat, ludzie patrza po sobie, a kazdy ma strach oraz uczucie wtf w oczach, cos pieknego. Chociaz juz wiekszosc z tego zapomnialem (na informatyce bylem a nie matematyce) to zawsze milo wspominam te przestrzenie metryczne.
Zaczynanie kursu analizy od przestrzeni metrycznych uważam za błąd nadgorliwości. Taki maksymalizm w zakresie tematycznym - typowy dla źródeł francuskich - jest dobry do podsumowań, a nie na start, nawet jeśli to kurs dla matematyków. Nie lubię zaczynania analizy od czego innego niż funkcje jednej zmiennej rzeczywistej.
Takie pokazówy, były w moim przekonaniu swego rodzaju filtrem, dzięki któremu wykładowca orientował się czy w jego zasięgu znajduje się osobnik, z którym będzie mógł popracować. U mnie po pierwszym roku poleciało chyba ze 30-40% pogłowia, już dokładnie nie pamiętam. Niektórzy się wcześniej wystraszyli, inni oblali egzaminy. Problem polega na tym, że nawet mając wielką ochotę nauczyć się matematyki na wyższym poziomie można było nie podołać. Od razu trzeba było być dobrym. Miałem kilku dobrych wykładowców, którzy świetnie wyjaśniali zagadnienia od podstaw, ale bywało tak, że wykładowca nie miał żadnego interesu w tym, żeby tych średniaków czegoś nauczyć. Bardzo dobrze pamiętam te bezsensownie przepalone godziny.
Najlepsza seria na polskim yt
19:14 można to jeszcze bardziej zredukować, do dwóch aksjomatów:
d(x,y)=0 x=y
oraz
d(x,y)
Świetna seria.
Przylaczam sie do pozostalych pozytywnych komentarzy, super wytlumaczone i ciekawie przedstawione.
Materiał jak zwykle super. I fajny zegarek. Jaki ref?
Dzięki ! Supernova AT 2021vpg - czego się nie robi dla nauki
Uwielbiam tę serie ❤
"Kto powiedział że kula nie może być kwadratowa?" ❣️
Cudowna seria❤
Super odcinek
Ehh marzenie... Na takie wykłady chodziłbym regularnie, a kto wie, może nawet trzeźwy...
Świetny film!
👍
w 18:29 jest błąd. Powinno być c < a + b. Poza tym świetny odcinek! :)
Dobre !!!
extra, dzieki
Dziękuję
kolejny odcinek na majówkę to byłoby to
Kiedy next part????
Tales z Miletu i Sedes z Ebonitu a Pitagoras twierdzi że matma śmierdzi - takie szkolne powiedzonko
Dzięki!
Dzień dobry, mam pytanie odnośnie odcinka serii "Zaczijmy od zera" o potęgowaniu i "najpiękniejszym wzorze matematyki". Zostały tam przedstawione reguły działania naturalnych, całkowitych, wymiernych, rzeczywistych i zespolonych wykładników potęg. Czy idąc dalej wykładnikiem potęgi może być kwaternion, oktonion czy inna liczba hiperzespolona? Jeśli tak to prosiłbym o wskazanie jakichś źródeł, w których mógłbym na ten temat poczytać.
Funkcję wykładniczą można zdefiniować dla szerszego zbioru (ekstrapolować) przez szereg potęgowy, a do niego jak najbardziej można podstawiać obiekty hiperzespolone - których nie lubię nazywać liczbami. Rozważa się nawet potęgi o wykładniku macierzowym; Grant Sanderson (3blue1brown) ma o tym filmik.
@@michatarnowski580 bardzo dziękuję za odpowiedź
👏
XD, a w zasadzie X,d
Uważam, że geometria jest bardzo pożyteczna. Można ją podziwiać w pięknych obrazach kubistycznych.
Czy algebrę można wyprowadzić z geometrii albo na odwrót? ok odpowiedz w dalszej części wykładu 🙂
3:54 bo tak :)
Jej! Nowa seria! :)
A co jeżeli by uznać ze odległość między punktami nie jest symetryczna lecz zależna od prędkości przemierzania tych odległości, tak jak uznaje się dylatację czasu podczas podrózowania, dążąc do prędkości swiatła. Dochodzimy do tego, iż punkty są w tym samym miejscu.
Co to znaczy, że wszystkie kąty są przystające? Sorry za głupie pytanie
że są takie same
Kiedy kolejny odcinek z tymi iloczynami skalarnymi?
Szkoda, że takiego wprowadzenia do metryk nie miałem na studiach 😊
Wykrycie kolizja obiektów w grach np w js, jest oparta na wzorze Pitagorasa.
❤
Jak Zibi top w piłce nożnej tak Miller top w matematyce. Gdyby matematycy rywalizowali w klubach piłkarskich, Tomasz Miller grałby w Juventusie!
Pytanko: Czy na podstawie dwóch punktów można wykreślić krzywą? Jaka jest różnica między krzywą, a prostą? Będę wdzięczny za możliwie prostą odpowiedź :P
Chyba trochę zbyt ogólne to pytanie, dobrze byłoby je doprecyzować...
Tak ogólnie można chyba tylko odpowiedzieć, że te różnice (między krzywą a prostą) przejawiają się na bardzo różnych poziomach.
Przykładowo:
1. Odcinek łączący dwa punkty definiuje się jako najkrótszą z wszystkich krzywych te dwa punkty łączące.
Dla dowolnej metryki taki odcinek istnieje (najwyżej) jeden, ale dla nieeuklidesowych nie muszą one być proste.
2. Prosta w przestrzeni kartezjańskiej opisuje się równaniem ogólnym Ax+By+C=0, gdzie A, B i C to parametry będące liczbami rzeczywistymi. Jak widać jest to równanie bardzo proste. Nie dość, że wielomianowe, to jeszcze stopnia 1.
Dla innych równań będziemy dostawać inne figury.
A jak w ogóle definiujemy przestrzeń ? Czym jest to ,,coś" w czym się poruszamy, funkcjonujemy ?
Przestrzeń nie ma swojej definicji (przynajmniej nie w oczach pierwotnie tworzących to pojęcie, współcześnie pewnie teoriokategoryści mają coś bardzo konkretnego na myśli mówiąc przestrzeń), ale jest to w zasadzie zbiór ze strukturą, większość przestrzeni to nadbudówki na przestrzeniach wektorowych.
Hej gdzie mogę znaleźć drugą cześć o metrykach ?
💪
Wymiary rzeczywistości....jakie to proste
humor poprawiony
A jak się zapyta grafika 3D czym jest geometria? ;)
Lubię
18:51 xD
Nie zapominajmy o metryce w muzyce. Niech pierwszy rzuci pałeczką perkusyjną, kto nie kojarzy odległości i długości w zapisie nutowym. Nie ma problemu, aby policzyć pole powierzchni "Ody do radości" odpowiednio definiując metrykę dla zapisu pod kluczem wiolinowym. I choć wydaje się to absurdalne - jak znam matematyków, to już dawno ktoś to zrobił i to na kilkanaście sposobów.
1:06 - jest jeszcze geometria wykreślna: "kreska" , "gwiezdne wojny" itp . Pozostawia trwały uszczerbek na zdrowiu. Kto przeżył ten wie :)
Pozdrawiam twórcę jednego z najlepszych i najciekawszych cyklów na polskim TH-cam. Gdybym był kobietą to bym zrobił nawet grr.
Co tu się odeuklidesowia!
Panie Tomaszu jakby Pan cos potrzebowal to prosze dac znac.