Hay una ley mas general FPEDMAS F de funciones Sin(3*(x+y)^2)^2 >= 5 La regla no dice siempre paréntesis primero si puede hacer operaciones como la distributiva hágala Por favor mostrar ejemplos con operadores relacionales y funciones Como la funcuon piso techo abs raíz etcétera
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
La única utilidad que tiene PEMDAS para el ser humano que quiera aprender a calcular. Si uno es una máquina a la que hay que programar, tal vez tenga algún provecho para sus circuitos inertes, claro está.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Muy buena argumentación. Ya me uní a tu canal!!! Sería exelente qué hicieras un video que diga... Enseñando a profe hitman a no limpiarse el culete con las reglas prioritarias de los operadores aritméticos. 😂😂😂😂😂
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
PEMDAS o jerarquía de las operaciones es más un recurso pedagógico para personas que se inician en la Matemática, sin embargo, es obvio que conociendo propiedades algebraicas podemos "violentarla", pero repito, es solo una herramienta, no una regla. Saludos desde México Profesor Juan, un abrazo. Gracias por hacernos pensar y razonar.
@@JRodriguez-c4w Hola! Pues igual, son recursos muy buenos, obviamente no los únicos, sin embargo cada quien aprende de distinta manera, considero que los libros de Baldor tienen herramientas y conceptos, además de algunas demostraciones (sobre todo en Geometría y Trigonometría) que pueden darte un panorama introductorio, si bien es cierto que tiene algunos errores, para identificarlos es necesario profundizar en otras fuentes y que la Matemática avance (cosa que ya hizo si se compara con los años en que fueron escritos los libros de Baldor). Un abrazo fuerte y saludos cordiales.
@@guerraalfarojorgealejandro823 SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
PEMDAS me parece una forma ordenada y más rápida para mostrarselas a los estudiantes. Aunque exista una forma más elegante y enriquecedora al utilizar propiedades. La que realiza usted. (Propiedad distributiva con respecto a la suma o resta). 3(1+6). Ahora bien, la forma que usted explica es válida. Qué haría usted si se cambiara la expresión respecto al exponente de los dos sumando fuera del paréntesis. 3(1+6)^1=3(1+6). Si en este caso se cambiara el exponente por 4. La expresión quedaría 3(1+6)^4 En este caso sería demasiado complicado para los estudiantes. Entonces lo más adecuado y rápido sería resolverlo por el método PEMDAS, el cual se resuelve lo que está dentro del paréntesis, luego solucionar la potencia (exponente), y finalmente la multiplicación. A veces es bueno ser más práctico y no tan riguroso. Que Se puede realizar de otra forma sin regirse al método PEMDAS, sí. Esta opción sería formal y rigurosa, por el uso de propiedades y demore más tiempo. .... Método PEMDAS 3(1+6)^4 = 3(7)^4=3*2401=7203 .... Y El método del profesor Juan sería más demandante para el estudiante. Creo que lo haría así. O dígame profe cómo lo haría si no acudiera al método PEMDAS 3(1+6)^4 = 3(1+6)(1+6)(1+6)(1+6)= 3(1+6+6+36)(1+6+6+36)= 3(1+48)(1+48)= 3(1+48+48+2304)= 3*1+3*48+3*48+3*2304= 3+144+144+6912= 7203 ... Para concluir quiero recalcar que el método PEMDAS es práctico y óptimo respecto al tiempo. Y el método Juan, por así decirlo, es otra manera de encontrarse con la rigurosidad, la lógica y la comprensión. Pero me genera más tiempo. Creo que el método depende de los participantes. Sí son estudiantes de Cole o escuela. O si son Universitario como ingenieros o lícenciados en matemáticas. ... Espero que siga el debate. Solo expuse mi punto de vista... profe Juan cómo resolvería la expresión presentada anteriormente 3(1+6)^4 ?
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Creo que tu punto de vista es acertado y tienes totalmente la razón, sin embargo, me gustaría añadir una nota de color: Sabemos que Alex se centra más en la eficiencia y no tanto en la rigurosidad (esto lo deja claro el mismo Alex), mientras que Juan se centra mucho mas en la rigurosidad y no tanto en la eficiencia. Una vez por sentado esto creo que es muy sabio unir ambas perspectivas para hacer uso de la eficiencia de Alex teniendo en mente siempre la lógica y rigurosidad de Juan.
Profe, repitiendo lo que dije, un factor matemático muy importante es la LÓGICA, imprescindible para nuestras vidas, las jerarquía que lo manden por ahí con los chimpancés
A mí me da más pena saber que se inventaron una abreviación como "PEMDAS" para aprenderse la jerarquía de operaciones xd Es tan sencillo como razonar un poco las expresiones matemáticas y profundizar en el tema
Eso es simplemente una propiedad, la propiedad distributiva de la multiplicación de un número por una suma. Esa propiedad. nos permite resolver 3. (X+2) ya que no podemos resolver x+2 y con la propiedad obtenemos 3x+6. No tiene relación con el orden de las operaciones. Eso tiene que ver con que el paréntesis indica solamente que el resultado de la suma es un solo valor, que puede ser calculado o no.
Las matemáticas son calcular un valor representando gráficamente una situación ocurrida, en este caso se puede presentar (en la vida real) como: Tengo 1 pera y 6 manzanas (explicando obligadamente con peras y manzanas) y me van a dar el triple de todas ellas, representamos gráficamente: 3•(1p +6m); cuando p=1 y m=1 (para representar una cantidad operable). 3•(1+6) = 3•7; o 3•1 + 3•6 Aquí estamos triplicando las peras y manzanas, podemos triplicarlas todas juntas, o triplicarlas por separado (en el caso de que las variables no tengan un valor ya establecido, se debe operar aparte). En fin, matemáticas es representar, no mecanizar. Hay diferentes formas de representar una operación que afecta a variables (no hay ninguna incorrecta, a veces, dependiendo de la situación).
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Que valiente usted profe, al desenmascarar al PEMDAS. el unico de montones de profesores que sabe matematicas ni el Traductor de Ingenieria tuvo el valor de decir la respuesta de este ejercicio tan malintencionado que todo mundo comparte en las redes. A lo mas que se atrevio a decir que estaba mal planteado: 6÷2(2+1). Casi todo mundo dice que es 9 segun el bendito PEMDAS hasta matarian por esa respuesta.
Por fin un tema muy dejado de lado por algunos que hacen cálculos matemáticos por TH-cam. Lo dicho aquí es SUMAMENTE IMPORTANTE para seguir el ordenamiento indispensable para resolver cualquier ejercicio o ecuación.
Ese profe Alex se la pasa lanzando encuestas sobre descifrar secuencias de números que poco o nada tiene que ver con las matemáticas. No me gusta su forma de enseñar. Basa su contenido en usar fórmulas sin profundizar en el sentido de por qué hace esas operaciones. Hace falta más lógica y menos memorizar al pie de la letra sin encontrar el sentido de lo que se hace.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
No sé si mi explicación bastará,pero si lo piensas con lógica una raíz par de un número negativo significa que tiene que multiplicarse un número de veces par para que de ese número negativo.La lógica nos dice que negativo x negativo =positivo.....al menos si no contamos los números imaginarios,ya que i^2=-1,así que si tenemos eso en cuenta con los imaginarios se puede En cuanto a la raíz impar de un número negativo,multiplicar un número negativo un número impar de veces daría negativo,así que sería una solución válida Lamento si no te es suficientemente aclarariva
Lo malo del pemdas y demás artilugios en matemática es que produce alumnos limitados. Obvio si vas a ser un pela papa aprender el pemdas es para ti, pero si vas a ser un ingeniero no lo creo.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES.....
PEMDAS y BODMAS, son sólo unas reglas no matemáticas, de una falsa jerarquía de operaciones, eso es lo que está tratando de explicar Juan. La falsa "jerarquía de operaciones" se puede deducir de las propiedades de las operaciones como la conmutatividad y la asociatividad (dice algo PEMDAS de los logaritmos??). Los lenguajes de programación tienen lo que se conoce como precedencia de operadores, tanto para operaciones como para expresiones lógicas y pueden variar entre lenguajes, hay que conocer en particular el lenguaje que estés usando, podrían dar resultados diferentes distintos lenguajes, no necesariamente coinciden con el PEMDAS y BODMAS, además que tienen muchos más operadores y no alcanza con las 6 letras. Existen lenguajes sin jerarquías de operaciones, por ejemplo los que usan notación RPN (reverse polish notation) En el caso de operaciones combinadas, ante la ambigüedad es preferible dejar explícitamente un paréntesis, pero tampoco como he visto mucho código que ponen tantos paréntesis como acá ((3x5) + (4x2) + (5x3)) + (5) que parece que no estás muy seguro de lo que va a pasar. En programación importa la legibilidad por lo tanto escribir un poco más si lo hace más legible está bien, pero no pasarte porque costará más entender el código.
@@luisandraschnik3001 amigo muchas gracias si porque a la hora de hacer operaciones combinadas no se como realizarlas en un lenguaje de programación y he visto que muchos dicen de la jerarquía de operaciones
@@luisandraschnik3001 SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Hola profe, podrías explicar cómo hacer ésta operación??, no la entiendo y tengo que entregar el miércoles el trabajo: ocho quintos menos diez más diez dividido por la raíz cuadrada de tres, todo esto multiplicado por dos al cuadrado, más la raíz cuadrada de pi menos diez.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
Hago publicidad de tus vídeos y me atrevo a sugerir que podrías crear el canal ASMR Matemáticas... con Juan. Sería algo así como lo de ahora con largas charlas susurrando. Ayudarías a que el personal se relajara al final del día y quien sabe si en la somnolencia entrarían las mates en la cabeza sin esfuerzo... Es solo una ocurrencia. Gracias por tus vídeos
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
Para hacer 3x1+3x6 sí utilizaste la jerarquía de operaciones. Lo mejor es poner todos los parentesis y no depender de ninguna jerarquía..... pero si se olvida poner alguno es mejor conocerla para que a todos nos de el mismo resultado.
Exacto, porque la confusión que tiene mucha gente es que realizan la operación tal cual de izquierda a derecha como si estuvieran leyendo o escribiendo un texto: 3 * 1 + 3 * 6 = x 3 + 3 * 6 = x 6 * 6 = x 36 = x Lo cual es incorrecto. Lo peor de todo es que hay muchos que aseguran que así es correcto y hasta se enojan y te insultan si les dices que no 😅😅😅
@@vhalkyrion Si escribes la operación en un programa de hojas de cálculo se los pruebas, y da 21 y no tienen de otra (a menos que sean conspiranóicos), he hecho eso y se convencen y no se enojan, a menos que les digas que son unos idiotas porque se equivocaron, y eso ya es otra cosa y sería tu culpa Explicarles qué es un término y que se suman dos. De izquierdo a derecho o viceversa.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES.....
Sí que es cierto que Juan explica muy detalladamente. Tabien lo es que se predica la jerarquía de las operaciones en álgebra. En primaria, las operaciones se hacen una tras otra, teniendo como argumento el total parcial anterior al número que habrá que operar.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
No es correcto. La paréntesis obliga a utilizar las propriedades asociativa y distributiva, los numeros entre parentesis se deben multiplicar ambos por el numero fuera, que equivale a sumarlos antes y despues multiplicarlos. No respetar la jerarquía sería multiplicar solo el primer numero entre paréntesis y no el segundo.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
En jerarquía de operaciones para calcular 3+5*2 siempre se tiene que hacer primero la multiplicación, pero se puede aplicar primero propiedades conmutativas 3+2*5, 2*5+3, y hago la multiplicación en tercer lugar, cumpliendo la ley de jerarquía, que dicta que operación aritmética hay que hacer primero Si no hubiera jerarquía, no sabría si 2*3+5 es (2*3)+5, o 2*(3+5). El paréntesis lo deja claro sin necesidad de ley de jerarquía, y esa es la razón porque está el primero.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES.....
Creo que en teoría lo que haz hecho no es hacer primero la multiplicación, sino que cambiaste la expresión por una equivalente aplicando propiedades. Y en esa expresión nueva utilizaste el orden correcto.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
@@matematicaconjuan Necesito pensar que fue buena la infancia, con algún que otro desencuentro con los chavales de tu edad. Ahora no hay piedras por las calles. Buen descanso, doctor.
Lo que pasa es que cuando ya se enseñan expresiones algebraicas, no se conoce como tal la propiedad distribuitiva y esto atrasa el trascurso de los temas que se deben ver después, mientras que si se muestra esta forma desde las operaciones básicas ya se puede entender más facilmente lo que se hace con las expresiones algebraicas.
El youtuber alex hasta hace poco decía que raíz cuadrada de un número era una cantidad positiva y negativa y las ecuaciones le salian igualmente, usando FALACIAS. Por cierto, el hombre, una y otra vez repite que sólo hay un modo de hacer las operaciones. No hay por dónde cogerlo. Cualquiera que venga aquí a defender a este youtuber es que realmente no está pensando en el daño que se hace a los estudiantes.
¿Y si le das vuelta los signos? osea que los que están dentro del paréntesis se multiplican y el que está fuera del paréntesis se suma.y haces con los mismos números con el mismo ejercicio ponerlos en cada lado y cada uno con un método distinto por un lado con la famosa "jerarquía de operaciónes" y por el otro como lo hizo Juan en el vídeo y te darás cuenta del resultado a pesar de que ambos son el mismo ejercicio (No más porque yo mismo lo comprobé pero no estoy seguro si es así o no ahí pa que lo vean)
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES...
Hola, Juan, seriamente (aunque en este canal nunca haya este comportamiento), ¿por qué razón cree que hay gente que en 2º de Bach. no se sabe la fórmula del área de un polígono regular o cosas más graves que hasta me dan vergüenza decirlas? ¿Piensa usted que la LOGSE realmente hizo mucho daño a la enseñanza? ¿Habría que realizar un pacto por la educación firmado por profesores para impedir que la enseñanza nos deje un nivel tan flojo para la universidad? Gracias, profesor. Explíquese todo lo que necesite, que estoy dispuesto a escuchar su respuesta.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
Vi un montón de gente resolver mal cálculos por aprenderse eso de pemdas de memoria. No es "en que orden tengo que resolver las cosas" sino una convención para que no sea ambigua la expresión. Si yo escribo 2 + 3 * 6 nos ponemos todos de acuerdo en que eso es un número más el producto de dos y no una suma multiplicada por un número. De esta forma nos evitamos tener que usar un montón de parentesis. No es qué cosa se resuelve primero sino dejar claro cuáles son los operandos de cada operación. De hecho la ambigüedad surje de que el operador se ponga en medio de los operandos. Si yo se que todos los operadores tienen dos operandos y lo pongo delante o detrás de los operandos, la necesidad de usar paréntesis o jerarquía de operaciones desaparece. 2 3 6 + * es lo mismo que 2 (3 6 +) * . Muchos procesadores funcionan así internamente pero no sé si es muy cómodo para personas.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Lo único que hizo fue expandir una operación que ya estaba factorizada. La confusión que es muy pero muy común con esto de las jerarquías son por ejemplo cuando hay una suma o resta antes de una multiplicación o división, por ejemplo: 3+2*6 5-4/2 Mucha gente se confunde con este formato de operaciones porque creen que se realizan de izquierda a derecha como cuando leemos o escribimos algún texto, lo cual no es correcto.
@@charlescole645 De todos modos estás haciendo primero la multiplicación, la jerarquía de la multiplicación va antes que la suma, no importa cómo lo veas.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
@@charlescole645 SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
No entiendo porqué cambiaste el ejemplo -4(-7+9) por el otro que da igual como lo hagas da 21... en cambio quedaría más claro si usas el ejemplo que descartaste. lo mismo pasa con el 999..... (999-1)... el resusultado es el mismo. Pero con -4(-7+9) no... ya que sería 64 y con el metodo pemdas ese sería -8
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES.....
¿Que acaso no hay bidet en Rusia? 😄 Me cachis en la mar. Cuando vaya al negocio de la esquina pediré entonces un rollo de PEMDAS o PAPOMUDAS como son conocidas aqui.
Como en otros videos del tema no estas violando la jerarquía de operaciones, estás usando la propiedad distributiva sin explicar que esta, también tiene reglas que debes respetar. Sería más conveniente resolver tus ejemplos siguiendo la jerarquía de operaciones ya que solamente se debe realizar una suma y una multiplicación, en cambio usando la propiedad distributiva haces dos multiplicaciones y una suma. Por otro lado siempre usas el ejemplo de la multiplicación y la suma, sin explicar que la multiplicación es distributiva sobre la suma y por eso se puede resolver de esa forma, los estudiantes sin experiencia suelen extender esa propiedad a otras operaciones por ejemplo en, 3 ( 8 : 2 ), lo que los llevaría a cometer un error y resolverlo como 3*8 : 3*2, y ese es el problema con tus videos.
Aquí no funciona la propiedad distributiva, tendría que haber suma o resta dentro del paréntesis: a(b+c) ó a(b-c). Esto se resuelve mejor, si no estoy mal, de esta forma: -4÷1 * 8÷4 * 2÷1 Donde se puede aplicar la propiedad conmutativa entre las fracciones: (-4÷1)*(8÷4)*(2÷1) = (8÷4)*(2÷1)*(-4÷1) = (2÷1)*(8÷4)* (-4÷1) y entre los numeradores y denominadores. (-4*8*2)÷(4*1*1) = (8*2*-4)÷(1*-4*1) = (2*-4*8)÷(1*1*-4)
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Perdóname Juan. El profe Alex tiene orden. Le habla a chicos recién salidos de primaria y a los que como yo, nos gustan las matemáticas y no tenemos muchas luces. También conocemos la propiedad distributiva y la aplicamos cuando hace falta. A veces vos me enredas bastante y das por sentados, pasos que se deberían explicar. Sos un genio, pero el orden todavía no mató a nadie. Soy Silvia, tengo 68 años y soy de Buenos Aires.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Sólo se aplicó la propiedad distributiva de la multiplicacion. Pero que tal en la operacion: 34(235 +15 - 248) Ahi, la prioridad de las operaciones te da una respuesta, incluso mental 34×2 =68. Entendiste Juan?
Dependiendo de los miembros de la expresión, puede ser más útil utilizar la propiedad distributiva de la multiplicación sobre la adición o no. En este caso no lo es porque se hacer operaciones más largas. Lo que se intenta explicar es que hay propiedades algebraicas (que definen el conjunto numérico) que hacen que se pueda manipular las expresión sin alterar el resultado. Por cierto 34*(235+15-248) = 7990+510+8432= 68. Yo tampoco hubiera tirado por ese camino. Pero si se me ofrece la posibilidad, por ser más sencillo, no lo hubiera dudado, al menos lo habría intentado. Este sistema de jerarquía de cálculo va a traer más de un problema a quien tenga que estudiar cálculo infinitesimal o algebral lineal, en la que la resolución de algunos problemas pasa por simplificación eficiente de las expresiones algebraicas.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES...
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
Profe Tengo unos cuantos ejercicios de analisis dimensional interesantes (tengo las respuestas) si desea podría pasárselo por aquí por whatsapp o por su correo electrónico, donde usted desee
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO. Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática. LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES. DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES. LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN. Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones. QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA. Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar. Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso. Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos. Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación. COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
Por si quieres invitarme a un bocata 🌭
www.paypal.com/paypalme/matematicasconjuan 🤍
Hay una ley mas general
FPEDMAS
F de funciones
Sin(3*(x+y)^2)^2 >= 5
La regla no dice siempre paréntesis primero si puede hacer operaciones como la distributiva hágala
Por favor mostrar ejemplos con operadores relacionales y funciones
Como la funcuon piso techo abs raíz etcétera
Profe porfavor haga un video de aprender a derivar desde 0
Ya me imagino al profe Juan vs el profe Alex en duelo del mejor peinado
Felicitaciones profe es ud un duro para hacer esas explicaciones tan fabulosas.
Hola, muchas gracias, Vicente
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Que elegante profe Juan limpiándose con el PEMDAS 🧐🍷
La única utilidad que tiene PEMDAS para el ser humano que quiera aprender a calcular. Si uno es una máquina a la que hay que programar, tal vez tenga algún provecho para sus circuitos inertes, claro está.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Muy buena argumentación. Ya me uní a tu canal!!!
Sería exelente qué hicieras un video que diga...
Enseñando a profe hitman a no limpiarse el culete con las reglas prioritarias de los operadores aritméticos. 😂😂😂😂😂
*No queda papel en el baño*
Juan: Tráiganme la jerarquía de operaciones
Augusto, me has quitado las palabras de la boca👊😈
😂😂😂 Lo mejor de la semana.
Tremendo Augusto 😂😂
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Lo que más amo de este profe es que la trae liada contra el profe Alex. No puedo con esto.
PEMDAS o jerarquía de las operaciones es más un recurso pedagógico para personas que se inician en la Matemática, sin embargo, es obvio que conociendo propiedades algebraicas podemos "violentarla", pero repito, es solo una herramienta, no una regla. Saludos desde México Profesor Juan, un abrazo. Gracias por hacernos pensar y razonar.
Hola Alex
Los libros de Baldor son buenos para iniciarse en matemáticas?
Gracias un saludo
@@JRodriguez-c4w Hola! Pues igual, son recursos muy buenos, obviamente no los únicos, sin embargo cada quien aprende de distinta manera, considero que los libros de Baldor tienen herramientas y conceptos, además de algunas demostraciones (sobre todo en Geometría y Trigonometría) que pueden darte un panorama introductorio, si bien es cierto que tiene algunos errores, para identificarlos es necesario profundizar en otras fuentes y que la Matemática avance (cosa que ya hizo si se compara con los años en que fueron escritos los libros de Baldor).
Un abrazo fuerte y saludos cordiales.
@@guerraalfarojorgealejandro823 SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
PEMDAS me parece una forma ordenada y más rápida para mostrarselas a los estudiantes. Aunque exista una forma más elegante y enriquecedora al utilizar propiedades. La que realiza usted. (Propiedad distributiva con respecto a la suma o resta). 3(1+6).
Ahora bien, la forma que usted explica es válida. Qué haría usted si se cambiara la expresión respecto al exponente de los dos sumando fuera del paréntesis. 3(1+6)^1=3(1+6).
Si en este caso se cambiara el exponente por 4. La expresión quedaría 3(1+6)^4 En este caso sería demasiado complicado para los estudiantes. Entonces lo más adecuado y rápido sería resolverlo por el método PEMDAS, el cual se resuelve lo que está dentro del paréntesis, luego solucionar la potencia (exponente), y finalmente la multiplicación. A veces es bueno ser más práctico y no tan riguroso. Que Se puede realizar de otra forma sin regirse al método PEMDAS, sí. Esta opción sería formal y rigurosa, por el uso de propiedades y demore más tiempo.
....
Método PEMDAS
3(1+6)^4 = 3(7)^4=3*2401=7203
....
Y El método del profesor Juan sería más demandante para el estudiante. Creo que lo haría así.
O dígame profe cómo lo haría si no acudiera al método PEMDAS
3(1+6)^4 = 3(1+6)(1+6)(1+6)(1+6)=
3(1+6+6+36)(1+6+6+36)=
3(1+48)(1+48)=
3(1+48+48+2304)=
3*1+3*48+3*48+3*2304=
3+144+144+6912=
7203
...
Para concluir quiero recalcar que el método PEMDAS es práctico y óptimo respecto al tiempo. Y el método Juan, por así decirlo, es otra manera de encontrarse con la rigurosidad, la lógica y la comprensión. Pero me genera más tiempo.
Creo que el método depende de los participantes. Sí son estudiantes de Cole o escuela. O si son Universitario como ingenieros o lícenciados en matemáticas.
...
Espero que siga el debate. Solo expuse mi punto de vista...
profe Juan cómo resolvería la expresión presentada anteriormente 3(1+6)^4 ?
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Creo que tu punto de vista es acertado y tienes totalmente la razón, sin embargo, me gustaría añadir una nota de color:
Sabemos que Alex se centra más en la eficiencia y no tanto en la rigurosidad
(esto lo deja claro el mismo Alex), mientras que Juan se centra mucho mas en la rigurosidad y no tanto en la eficiencia. Una vez por sentado esto creo que es muy sabio unir ambas perspectivas para hacer uso de la eficiencia de Alex teniendo en mente siempre la lógica y rigurosidad de Juan.
Profe, repitiendo lo que dije, un factor matemático muy importante es la LÓGICA, imprescindible para nuestras vidas, las jerarquía que lo manden por ahí con los chimpancés
A mí me da más pena saber que se inventaron una abreviación como "PEMDAS" para aprenderse la jerarquía de operaciones xd
Es tan sencillo como razonar un poco las expresiones matemáticas y profundizar en el tema
Mates, un abrazo.
De acuerdo contigo, Adriano!
@@matematicaconjuan Gracias, profe Juan 😸
@@AdrianoMondragonCómo se razonan las expresiones para saber si se hace primero la multiplicación o la división?
Eso es simplemente una propiedad, la propiedad distributiva de la multiplicación de un número por una suma. Esa propiedad. nos permite resolver 3. (X+2) ya que no podemos resolver x+2 y con la propiedad obtenemos 3x+6. No tiene relación con el orden de las operaciones. Eso tiene que ver con que el paréntesis indica solamente que el resultado de la suma es un solo valor, que puede ser calculado o no.
María, las operaciones matemáticas no es secuenciar números según una jerarquía. No se está entendiendo nada😅😅😅😅
Las matemáticas son calcular un valor representando gráficamente una situación ocurrida, en este caso se puede presentar (en la vida real) como:
Tengo 1 pera y 6 manzanas (explicando obligadamente con peras y manzanas) y me van a dar el triple de todas ellas, representamos gráficamente:
3•(1p +6m); cuando p=1 y m=1 (para representar una cantidad operable).
3•(1+6) = 3•7; o 3•1 + 3•6
Aquí estamos triplicando las peras y manzanas, podemos triplicarlas todas juntas, o triplicarlas por separado (en el caso de que las variables no tengan un valor ya establecido, se debe operar aparte).
En fin, matemáticas es representar, no mecanizar. Hay diferentes formas de representar una operación que afecta a variables (no hay ninguna incorrecta, a veces, dependiendo de la situación).
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Excelente video
A la orden
Que valiente usted profe, al desenmascarar al PEMDAS. el unico de montones de profesores que sabe matematicas ni el Traductor de Ingenieria tuvo el valor de decir la respuesta de este ejercicio tan malintencionado que todo mundo comparte en las redes. A lo mas que se atrevio a decir que estaba mal planteado: 6÷2(2+1). Casi todo mundo dice que es 9 segun el bendito PEMDAS hasta matarian por esa respuesta.
1
Por fin un tema muy dejado de lado por algunos que hacen cálculos matemáticos por TH-cam. Lo dicho aquí es SUMAMENTE IMPORTANTE para seguir el ordenamiento indispensable para resolver cualquier ejercicio o ecuación.
Yo viendo un vídeo ase 2 años q el profesor estaba muy nervioso por ASER un vídeo y ahora tiene mucha confianza
Muy interesante profe, siempre!!!!
Hola, muchas gracias
Me encanta tu cabello :D
¡Que crack Juan! Me alegro que te vaya todo genial!
Genial, como siempre, profe Juan!!! ❤
Ese profe Alex se la pasa lanzando encuestas sobre descifrar secuencias de números que poco o nada tiene que ver con las matemáticas. No me gusta su forma de enseñar. Basa su contenido en usar fórmulas sin profundizar en el sentido de por qué hace esas operaciones. Hace falta más lógica y menos memorizar al pie de la letra sin encontrar el sentido de lo que se hace.
Me ha encantado eso de "descifrar secuencias de números". Grandísimo comentario, Alberto 🙏😌
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
Profe una ayuda con las ecuaciones diferenciales de segundo orden
Cielos, que basado! xD
Muchas gracias!!
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Creo que Juan transmite desde Rusia sus videos y comentó en uno que tiene orígen asturiano.
Podrias demostrar o explicar por que raices pares de números negativos son imaginarios y las raices impares de números NegativoS soN negativos
Gracias
No sé si mi explicación bastará,pero si lo piensas con lógica una raíz par de un número negativo significa que tiene que multiplicarse un número de veces par para que de ese número negativo.La lógica nos dice que negativo x negativo =positivo.....al menos si no contamos los números imaginarios,ya que i^2=-1,así que si tenemos eso en cuenta con los imaginarios se puede
En cuanto a la raíz impar de un número negativo,multiplicar un número negativo un número impar de veces daría negativo,así que sería una solución válida
Lamento si no te es suficientemente aclarariva
Yo no vi a Juan limpiándose
Adoración!!!
Lo malo del pemdas y demás artilugios en matemática es que produce alumnos limitados. Obvio si vas a ser un pela papa aprender el pemdas es para ti, pero si vas a ser un ingeniero no lo creo.
D acuerdo al cien por ciento!
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES.....
Profe y en el caso de la programación ahí se aplica mucho eso de PEMDAS que se hace ahí?
PEMDAS y BODMAS, son sólo unas reglas no matemáticas, de una falsa jerarquía de operaciones, eso es lo que está tratando de explicar Juan. La falsa "jerarquía de operaciones" se puede deducir de las propiedades de las operaciones como la conmutatividad y la asociatividad (dice algo PEMDAS de los logaritmos??).
Los lenguajes de programación tienen lo que se conoce como precedencia de operadores, tanto para operaciones como para expresiones lógicas y pueden variar entre lenguajes, hay que conocer en particular el lenguaje que estés usando, podrían dar resultados diferentes distintos lenguajes, no necesariamente coinciden con el PEMDAS y BODMAS, además que tienen muchos más operadores y no alcanza con las 6 letras. Existen lenguajes sin jerarquías de operaciones, por ejemplo los que usan notación RPN (reverse polish notation)
En el caso de operaciones combinadas, ante la ambigüedad es preferible dejar explícitamente un paréntesis, pero tampoco como he visto mucho código que ponen tantos paréntesis como acá ((3x5) + (4x2) + (5x3)) + (5) que parece que no estás muy seguro de lo que va a pasar. En programación importa la legibilidad por lo tanto escribir un poco más si lo hace más legible está bien, pero no pasarte porque costará más entender el código.
@@luisandraschnik3001 amigo muchas gracias si porque a la hora de hacer operaciones combinadas no se como realizarlas en un lenguaje de programación y he visto que muchos dicen de la jerarquía de operaciones
@@luisandraschnik3001 SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
grande, jeff bezos enseñando jerarquia de operaciones
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Siempre elegante el profe Juan. Muy buen video, muy interesante :b
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Brutal. Ya suscrito, Master
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Hola profe, podrías explicar cómo hacer ésta operación??, no la entiendo y tengo que entregar el miércoles el trabajo:
ocho quintos menos diez más diez dividido por la raíz cuadrada de tres, todo esto multiplicado por dos al cuadrado, más la raíz cuadrada de pi menos diez.
2²(8÷5+ 10 - 10÷√3) + √(π-10)
por que tan peinado Juan?
Queda claro, gracias.
Ernest, siempre a tu servicio 😌💜💙
Porque en este caso es equivalente. El resultado es el mismo.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
Hago publicidad de tus vídeos y me atrevo a sugerir que podrías crear el canal ASMR Matemáticas... con Juan. Sería algo así como lo de ahora con largas charlas susurrando. Ayudarías a que el personal se relajara al final del día y quien sabe si en la somnolencia entrarían las mates en la cabeza sin esfuerzo... Es solo una ocurrencia. Gracias por tus vídeos
Los merlucines estamos en deuda contigo, Profesor Juan. 🥺
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
Para hacer 3x1+3x6 sí utilizaste la jerarquía de operaciones. Lo mejor es poner todos los parentesis y no depender de ninguna jerarquía..... pero si se olvida poner alguno es mejor conocerla para que a todos nos de el mismo resultado.
Exacto, porque la confusión que tiene mucha gente es que realizan la operación tal cual de izquierda a derecha como si estuvieran leyendo o escribiendo un texto:
3 * 1 + 3 * 6 = x
3 + 3 * 6 = x
6 * 6 = x
36 = x
Lo cual es incorrecto. Lo peor de todo es que hay muchos que aseguran que así es correcto y hasta se enojan y te insultan si les dices que no 😅😅😅
@@vhalkyrion Si escribes la operación en un programa de hojas de cálculo se los pruebas, y da 21 y no tienen de otra (a menos que sean conspiranóicos), he hecho eso y se convencen y no se enojan, a menos que les digas que son unos idiotas porque se equivocaron, y eso ya es otra cosa y sería tu culpa
Explicarles qué es un término y que se suman dos.
De izquierdo a derecho o viceversa.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Q buen video Juan
Quisiera tener de profesor😔😭
Espero sigas creciendo ^^
Hola Juan lo de recién fue muy básico 😅
Que inteligencia más descabellada
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES.....
Sí que es cierto que Juan explica muy detalladamente.
Tabien lo es que se predica la jerarquía de las operaciones en álgebra.
En primaria, las operaciones se hacen una tras otra, teniendo como argumento el total parcial anterior al número que habrá que operar.
Buenas noches a todes: Juanas y Juanes. ❤️
Profesor don Juan, por qué aparece siempre el número de Fibonacci por todos lados? Haga un vídeo ya, se lo pido por favor
Me sale en el consumo de intensidad en las lámparas ccfl de las TV por ejemplo
Que maquinote
Un merlucín para servirte, Reinnven
Ahí hubo un poco de hate al profe Alex, creo que no era necesario mostrar su video.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
No es correcto. La paréntesis obliga a utilizar las propriedades asociativa y distributiva, los numeros entre parentesis se deben multiplicar ambos por el numero fuera, que equivale a sumarlos antes y despues multiplicarlos. No respetar la jerarquía sería multiplicar solo el primer numero entre paréntesis y no el segundo.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
@@NotasdeServalo Para mí está clarísimo tu aporte gracias.
En jerarquía de operaciones para calcular 3+5*2 siempre se tiene que hacer primero la multiplicación, pero se puede aplicar primero propiedades conmutativas 3+2*5, 2*5+3, y hago la multiplicación en tercer lugar, cumpliendo la ley de jerarquía, que dicta que operación aritmética hay que hacer primero Si no hubiera jerarquía, no sabría si 2*3+5 es (2*3)+5, o 2*(3+5). El paréntesis lo deja claro sin necesidad de ley de jerarquía, y esa es la razón porque está el primero.
La comunidad de matemáticas es más tóxica que la de los gachatubers.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES.....
Creo que en teoría lo que haz hecho no es hacer primero la multiplicación, sino que cambiaste la expresión por una equivalente aplicando propiedades. Y en esa expresión nueva utilizaste el orden correcto.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
no quere respetar la jerarquia
_que idea mas descabellada_
Peleón, peleón...
No lo quiero ver de niño por las calles de su barrio y peleándose por los cromos de futbolistas...
Tébar, tengo una raja en la mejilla. Fue de una pedrada cuando era un niño quinqui en mi barrio. Infancia horrible! Ten una noche fantástica!
@@matematicaconjuan Necesito pensar que fue buena la infancia, con algún que otro desencuentro con los chavales de tu edad. Ahora no hay piedras por las calles.
Buen descanso, doctor.
@@tesojiram 9
😂😂😅Siempre Juan!!!
Mauricio, contentísimo siempre. Un abrazo. 🤗
Los efectos de sonido XD buena esa profe
Por cualquiera de los dos métodos, el resultado es 21.
Ambos métodos son correctos!!
Lo que pasa es que cuando ya se enseñan expresiones algebraicas, no se conoce como tal la propiedad distribuitiva y esto atrasa el trascurso de los temas que se deben ver después, mientras que si se muestra esta forma desde las operaciones básicas ya se puede entender más facilmente lo que se hace con las expresiones algebraicas.
Nicolas, ESO ES. Ahí está el meollo de la cuestión.
El youtuber alex hasta hace poco decía que raíz cuadrada de un número era una cantidad positiva y negativa y las ecuaciones le salian igualmente, usando FALACIAS. Por cierto, el hombre, una y otra vez repite que sólo hay un modo de hacer las operaciones. No hay por dónde cogerlo. Cualquiera que venga aquí a defender a este youtuber es que realmente no está pensando en el daño que se hace a los estudiantes.
¿Y si le das vuelta los signos?
osea que los que están dentro del paréntesis se multiplican y el que está fuera del paréntesis se suma.y haces con los mismos números con el mismo ejercicio ponerlos en cada lado y cada uno con un método distinto por un lado con la famosa "jerarquía de operaciónes" y por el otro como lo hizo Juan en el vídeo y te darás cuenta del resultado a pesar de que ambos son el mismo ejercicio
(No más porque yo mismo lo comprobé pero no estoy seguro si es así o no ahí pa que lo vean)
Juan por que siempre estas despeinado
Ame el sonido de OOOOOMAGA!
0:36 esta parte me mato de la risa
Fue demasiado ramdom xdxd
El efecto de sonido XDXDXD
@@geovanycassanova492 eso es lo mejor XDD, me encanta que lo edite él mismo además
Jajajaaj este man se la tiene adentro al profe Alex.
Que culet eres profesor,
Jorge, un saludo. Gracias por estar aquí!
Juan siendo Juan epico 🤑👌
Lo primero que se hace es el corchete.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES...
Hola, Juan, seriamente (aunque en este canal nunca haya este comportamiento), ¿por qué razón cree que hay gente que en 2º de Bach. no se sabe la fórmula del área de un polígono regular o cosas más graves que hasta me dan vergüenza decirlas? ¿Piensa usted que la LOGSE realmente hizo mucho daño a la enseñanza? ¿Habría que realizar un pacto por la educación firmado por profesores para impedir que la enseñanza nos deje un nivel tan flojo para la universidad? Gracias, profesor. Explíquese todo lo que necesite, que estoy dispuesto a escuchar su respuesta.
Profesor Juan, mejor límpiese con papel higiénico!
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Juan, estás un poco alterado 😢 Que estés bien 😊
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
Vi un montón de gente resolver mal cálculos por aprenderse eso de pemdas de memoria.
No es "en que orden tengo que resolver las cosas" sino una convención para que no sea ambigua la expresión.
Si yo escribo 2 + 3 * 6 nos ponemos todos de acuerdo en que eso es un número más el producto de dos y no una suma multiplicada por un número. De esta forma nos evitamos tener que usar un montón de parentesis.
No es qué cosa se resuelve primero sino dejar claro cuáles son los operandos de cada operación.
De hecho la ambigüedad surje de que el operador se ponga en medio de los operandos. Si yo se que todos los operadores tienen dos operandos y lo pongo delante o detrás de los operandos, la necesidad de usar paréntesis o jerarquía de operaciones desaparece. 2 3 6 + * es lo mismo que 2 (3 6 +) * . Muchos procesadores funcionan así internamente pero no sé si es muy cómodo para personas.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Lo único que hizo fue expandir una operación que ya estaba factorizada. La confusión que es muy pero muy común con esto de las jerarquías son por ejemplo cuando hay una suma o resta antes de una multiplicación o división, por ejemplo:
3+2*6
5-4/2
Mucha gente se confunde con este formato de operaciones porque creen que se realizan de izquierda a derecha como cuando leemos o escribimos algún texto, lo cual no es correcto.
Se puede de izquierda a derecha operar cada término o también de derecha a izquierda, no importa el orden
3 + 2*6
5 - 4/2
@@charlescole645 De todos modos estás haciendo primero la multiplicación, la jerarquía de la multiplicación va antes que la suma, no importa cómo lo veas.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
@@charlescole645 SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
No entiendo porqué cambiaste el ejemplo -4(-7+9) por el otro que da igual como lo hagas da 21... en cambio quedaría más claro si usas el ejemplo que descartaste. lo mismo pasa con el 999..... (999-1)... el resusultado es el mismo. Pero con -4(-7+9) no... ya que sería 64 y con el metodo pemdas ese sería -8
No jodas
EL MEJOR PROFE JUAN,,,LIKE
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
profe me puedes dejar sin recreo por favor
Esa pena siempre está ahí, como una espada de Damocles. Cuando menos te lo esperes, cuando más te duela...😈 😈 😈
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
Ahhh jajajaja profe , usted es el mejor simplemente el mejor , no lo ambio por ninguno jajajajaja
21 aceituno👻
🌐
Alvin, un placer verte por aquí. Mil gracias por la membresía!!
18 me como un bizcocho, 21 me como un aceituno. Gracias profe.
Que grande lastima que ya no estudio para decirle al profe que al final da lo mismo q wey
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
Muy bueno, pero nada humilde... Se limpiará su peladote?...
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
@@NotasdeServalo muy buen análisis, muy buena respuesta para la soberbia... Felicitaciones.
El pto amo⚠️
Buen video🗿
Legenda
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
21 aceituno 😂
ᴠᴇᴀᴍᴏs 🎉ᴊᴜᴀɴ , ᴄᴏʀʀɪᴊᴇ ᴠᴀ
Peppe, un placer siempre saludarte
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES.....
¿Que acaso no hay bidet en Rusia? 😄 Me cachis en la mar. Cuando vaya al negocio de la esquina pediré entonces un rollo de PEMDAS o PAPOMUDAS como son conocidas aqui.
Como en otros videos del tema no estas violando la jerarquía de operaciones, estás usando la propiedad distributiva sin explicar que esta, también tiene reglas que debes respetar.
Sería más conveniente resolver tus ejemplos siguiendo la jerarquía de operaciones ya que solamente se debe realizar una suma y una multiplicación, en cambio usando la propiedad distributiva haces dos multiplicaciones y una suma.
Por otro lado siempre usas el ejemplo de la multiplicación y la suma, sin explicar que la multiplicación es distributiva sobre la suma y por eso se puede resolver de esa forma, los estudiantes sin experiencia suelen extender esa propiedad a otras operaciones por ejemplo en, 3 ( 8 : 2 ), lo que los llevaría a cometer un error y resolverlo como 3*8 : 3*2, y ese es el problema con tus videos.
Con su método resuelva -4.(8÷4)×2
Aquí no funciona la propiedad distributiva, tendría que haber suma o resta dentro del paréntesis: a(b+c) ó a(b-c).
Esto se resuelve mejor, si no estoy mal, de esta forma:
-4÷1 * 8÷4 * 2÷1
Donde se puede aplicar la propiedad conmutativa entre las fracciones:
(-4÷1)*(8÷4)*(2÷1) = (8÷4)*(2÷1)*(-4÷1) = (2÷1)*(8÷4)* (-4÷1)
y entre los numeradores y denominadores.
(-4*8*2)÷(4*1*1) = (8*2*-4)÷(1*-4*1) = (2*-4*8)÷(1*1*-4)
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
XDdddddd BASADISIMOOOOOOOOOO
Tempano, gracias por apoyarme!!
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Si no se hiciera tanto el payaso enseniaria mejor
OOOH MA GAA
Oooooooomagaaaaa
Mucho brillo
Perdóname Juan. El profe Alex tiene orden. Le habla a chicos recién salidos de primaria y a los que como yo, nos gustan las matemáticas y no tenemos muchas luces. También conocemos la propiedad distributiva y la aplicamos cuando hace falta. A veces vos me enredas bastante y das por sentados, pasos que se deberían explicar. Sos un genio, pero el orden todavía no mató a nadie. Soy Silvia, tengo 68 años y soy de Buenos Aires.
Hola, Silvia. Aquí hablamos de matemáticas. No nos depilamos los brazos. Prepárate para el vídeo q en un par de horas estará listo🤩🙏
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
Sólo se aplicó la propiedad distributiva de la multiplicacion. Pero que tal en la operacion:
34(235 +15 - 248)
Ahi, la prioridad de las operaciones te da una respuesta, incluso mental
34×2 =68.
Entendiste Juan?
Dependiendo de los miembros de la expresión, puede ser más útil utilizar la propiedad distributiva de la multiplicación sobre la adición o no. En este caso no lo es porque se hacer operaciones más largas. Lo que se intenta explicar es que hay propiedades algebraicas (que definen el conjunto numérico) que hacen que se pueda manipular las expresión sin alterar el resultado. Por cierto 34*(235+15-248) = 7990+510+8432= 68. Yo tampoco hubiera tirado por ese camino. Pero si se me ofrece la posibilidad, por ser más sencillo, no lo hubiera dudado, al menos lo habría intentado.
Este sistema de jerarquía de cálculo va a traer más de un problema a quien tenga que estudiar cálculo infinitesimal o algebral lineal, en la que la resolución de algunos problemas pasa por simplificación eficiente de las expresiones algebraicas.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
Vale, Juam, es evidente que lo manejas muy bien pero esto es un truquito tonto y elemental que solo sirve para confundir.
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES..
🤣🤣🤣
Cómp Juan, cómo!? Quiero verlo!
No seas arrogante pelón.
¿y vuestras medallas fields tenes?
¿Y buena ortografía tenes?
@@Fourei8984 not
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES...
diabólico cómo siempre Juan
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....
Profe Tengo unos cuantos ejercicios de analisis dimensional interesantes (tengo las respuestas) si desea podría pasárselo por aquí por whatsapp o por su correo electrónico, donde usted desee
De paso pídele su tarjeta bancaria.
jaja profe le llega algún que otro msj de sus colegas disgustados?
SEÑOR JUAN, HEMOS OBSERVADO QUE EN ALGUNOS DE SUS VIDEOS COMETE GRAVES ERRORES CUANDO SE DEJA LLEVAR POR LA INTUICIÓN Y DEJA DE LADO EL RIGOR MATEMÁTICO.
Por ejemplo: hace un año publicó un video sobre operaciones aritméticas, afirmando en reiteradas ocasiones que para resolver esta expresión 6÷2×3 se procedía de izquierda a derecha (video que esperamos haya borrado y sobre todo pedido disculpas a sus seguidores por haberlos confundido). Hace poco ha publicado otro video al respecto tratando de explicar lo mismo 6÷2×3, pero usando un refrán o algo parecido a un trabalenguas; le recordamos que la matemática se resuelve utilizando argumentos y fundamentos matemáticos. Imagínese inventar un refrán para calcular la raíz cuadrada de un número, así no funciona la matemática.
LA “IGNORANCIA” PUEDE SER MAYÚSCULA CUANDO ALGUIEN QUE PRETENDE SER PROFESOR INTENTA SORPRENDER A SUS SEGUIDORES USANDO SU POPULARIDAD, CON AFIRMACIONES INTUITIVAS SIN NINGÚN RESPALDO MATEMÁTICO, SIN TENER EN CUENTA EL GRAVE DAÑO QUE LE HACE A LOS ESTUDIANTES.
DEBEMOS INICIAR AHORA, ACLARANDO QUE SOLO TENEMOS 6 OPERACIONES BÁSICAS (potenciación, radicación, multiplicación, división, adición y sustracción) Y ENTRE ELLOS HAY JERARQUÍAS. EL PARÉNTESIS NO ES NINGUNA OPERACIÓN MATEMÁTICA, PERO INTERVIENE COMO SÍMBOLO AUXILIAR PARA EVITAR AMBIGUEDADES Y REGULAR LAS OPERACIONES.
LE RECORDAMOS SEÑOR JUAN, QUE LA JERARQUÍA DE OPERACIONES NO SON LEYES (una ley matemática es de carácter obligatorio), LA JERARQUÍA DE OPERACIONES SON REGLAS (una regla matemática, regula para evitar confusiones) QUE SE UTILIZAN PARA UNIFORMIZAR LOS RESULTADOS Y EVITAR INTERPRETACIONES ANTOJADIZAS AL MOMENTO DE OPERAR LOS NÚMEROS. UN POCO DE HISTORIA MATEMÁTICA Y UNA DOSIS DE RESPETO POR ELLA LE CAERÍA BIEN.
Por ejemplo: En la operación 3+4×5 = 23 es el resultado único que debe suceder; imagínense que al alumno Juanito se le ocurra primero sumar y luego multiplicar, obtendría 35 . Pero este mismo alumno podría utilizar la propiedad conmutativa de la multiplicación y esta vez escribir3 + 5×4 y realizando primero la suma y luego multiplicando, esta vez obtendría 32 para la misma expresión. Por eso, para evitar estas divergencias se consensuaron las reglas sobre la jerarquía de las operaciones.
QUE PENA QUE NO HAYA LOGRADO DISTINGIR ENTRE JERARQUÍA DE OPERACIONES Y LA PROPIEDAD DISTRIBUTIVA, AMBOS SON CONCEPTOS TOTALMENTE DISTINTOS. LA PROPIEDAD DISTRIBUTIVA SE UTILIZA COMO UN ATAJO O RECURSO PARA SITUACIONES ESPECIALES, SIENDO UTILIZADO CON GRAN FRECUENCIA EN EL ÁLGEBRA.
Por ejemplo: en la ecuación 3(x + 7) + 5(4x + 3) = 151 tenemos dos operaciones, la multiplicación y la adición, como no se puede realizar la suma de (x + 7) y (4x + 3) entonces se ingresa dentro del paréntesis un elemento externo “que desarrolla el paréntesis y lo elimine”, lo repetimos “ que desarrolle el paréntesis y lo elimine” , otra vez “que desarrolle el paréntesis y lo elimine”, es decir estamos resolviendo dentro del paréntesis como indica la regla de jerarquía, quedando la expresión como: 3x + 3.7 + 5x + 5.3 = 151 y veremos que ya no hay paréntesis, se está respetando la jerarquía porque ahora toca multiplicar y después sumar.
Otro ejemplo: en la operación (7263 + 2737)×679 no conviene realizar la propiedad distributiva porque complicamos y demoramos el proceso.
Pero en esta otra operación (1000 - 1)×7 me conviene utilizar la propiedad distributiva como una atajo para agilizar los cálculos.
Un último ejemplo: [3(9 - 2) + 25(7 + 3)]×0 = 0 en esta operación, alguno podría presumir y decir que aquí no tuvo necesidad de resolver los paréntesis o corchetes y que se saltó y limpió el “culete” olímpicamente con la jerarquía porque multiplicó por CERO y el resultado es CERO. Cuando simplemente utilizó el elemento absorvente como atajo para resolver la operación.
COMO VERÁ, LA PROPIEDAD DISTRIBUTIVA ES UNA HERRAMIENTA AUXILIAR QUE PERMITE EN ALGUNOS CASOS ALIGERAR EL PROCESO, PERO NADA TIENE QUE VER CON LA JERARQUÍA DE LAS OPERACIONES....