Integrate x^-x dx

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ก.พ. 2025

ความคิดเห็น • 226

  • @jmmc6219
    @jmmc6219 6 หลายเดือนก่อน +348

    It feels like I am watching a Mathematical opera when ever I watch your videos. The drama! The suspense! Bravo 👏

    • @dannysigurdson7108
      @dannysigurdson7108 5 หลายเดือนก่อน

      Meanwhile I feel like I'm being tied down and mathematically sodomized

  • @Modo942000
    @Modo942000 6 หลายเดือนก่อน +295

    It's really interesting how the integration of the original function between 0 and 1 ends up being equal to the infinite discrete sum of the same function starting from 1. I'm not sure why but it just feels fascinating that something like this exists.

    • @letao12
      @letao12 5 หลายเดือนก่อน +32

      I got the same feeling. There must be some interesting symmetry.
      On the other hand, I also feel like the answer isn't any more helpful than the original question 🤣

    • @夢と希望-d8y
      @夢と希望-d8y 5 หลายเดือนก่อน +3

      I can think of the Riemann integral from the shape of the function and the intervals of the integral and series, but I can’t quite come up with a way to express the Riemann sum properly.

    • @hammondkakavandi7738
      @hammondkakavandi7738 4 หลายเดือนก่อน +3

      @@letao12 the power in answer is negative and it is sum rather than integration... it can be calculated by a computer easily with some approximation so I think it is very helpful answer

    • @alexwarner3803
      @alexwarner3803 4 หลายเดือนก่อน

      ​@hammondkakavandi7738 the power in the original integral is negative also man.
      1/(x^x)
      =
      x^(-×)

    • @kyoukaiten3834
      @kyoukaiten3834 3 หลายเดือนก่อน +2

      ​@@letao12 if you learn integral properly in calculus, you'll know it's not really that surprising, considering integral comes from limit to infinity of the sum of the function..
      This is why we learn calculus, the study of limit, we must never forget the origin of derivative and integral, that they are all just limits..

  • @madushansamudika4543
    @madushansamudika4543 5 หลายเดือนก่อน +89

    "Never stop learning.If you stop learning. Stop living..." I appreciate you very much.. Nice explanation and nice question..

    • @ranae6566
      @ranae6566 5 หลายเดือนก่อน +7

      I think it’s “those who stop learning stop living”. Not to be nitpicky but changing “those” to “if” makes it sound like you’re suggesting suicide if they stop learning😂

    • @madushansamudika4543
      @madushansamudika4543 5 หลายเดือนก่อน

      @@ranae6566 learning means not only studies..

    • @slimanemzerguat3298
      @slimanemzerguat3298 4 หลายเดือนก่อน +2

      ​@@ranae6566 I literally liked his version better. Bro was like if you stop learning I will be personally looking for you

  • @tessfra7695
    @tessfra7695 6 หลายเดือนก่อน +178

    I really like that sir shows it's OK to back track & re-think when we reach a road block in solving

    • @kevinbush4300
      @kevinbush4300 6 หลายเดือนก่อน +2

      Yes, it's very reassuring

    • @DavidLocke-s4r
      @DavidLocke-s4r 6 หลายเดือนก่อน +1

      He sees the future that we have never, as of yet, seen, then he backtracks.

    • @sovietwizard1620
      @sovietwizard1620 6 หลายเดือนก่อน +2

      Yes I agree, but I think this is very common in calculus especially.

    • @tessfra7695
      @tessfra7695 6 หลายเดือนก่อน +5

      I subscribe to a few other maths channels..all of them just show the right way(s) of getting to the ans..here, we get to understand WHY a particular way won't work, & how to get around/through/above the block..much appreciated!

  • @nachoboi_
    @nachoboi_ 29 วันที่ผ่านมา +3

    It’s so beautiful. One of the best problems I’ve ever seen. Everything just worked out so beautifully and it uses my favorite, the gamma function!

  • @eng954
    @eng954 5 หลายเดือนก่อน +16

    As an ex calculus private teacher i appreciate your expression so much.Your english and explanation is so clear.

  • @arantheo8607
    @arantheo8607 5 หลายเดือนก่อน +7

    Clear and detailed explanation of the steps taken to tackle the problem , thank you , opera writer !

  • @davidtallent8161
    @davidtallent8161 5 หลายเดือนก่อน +13

    Excellent teacher! It is so refreshing to experience mathematics taught well. His enthusiasm and knowledge makes the difficult easy.😊

  • @smftrsddvjiou6443
    @smftrsddvjiou6443 6 หลายเดือนก่อน +38

    Wow, did not expect that is so complicated.

  • @stevebeal73
    @stevebeal73 6 หลายเดือนก่อน +43

    I just loved this and your whole approach. As a 74 year old UK guy who took his BSc in 1971, I am indeed still learning. Thank you!

    • @johnclymo3668
      @johnclymo3668 6 หลายเดือนก่อน +7

      I thought your comment was good to see that at your age you are still learning . I am sure the education system has changed since you were at uni.

  • @renesperb
    @renesperb 6 หลายเดือนก่อน +14

    You do a very good job explaining the solution.The result is really nice.

  • @dangernuke929
    @dangernuke929 6 หลายเดือนก่อน +18

    That was spectacular! Beautifully done!

  • @butch2kow549
    @butch2kow549 4 หลายเดือนก่อน +1

    One of your BEST videos that I have seen of yours. I really enjoyed it.

  • @jeromevatrinet3432
    @jeromevatrinet3432 4 หลายเดือนก่อน +2

    This teacher is absolutely awesome. I am really a fan of his way to explain. Perfect !

  • @asparkdeity8717
    @asparkdeity8717 6 หลายเดือนก่อน +22

    It really feels like a Sophomore’s Dream!

  • @zealous2835
    @zealous2835 5 หลายเดือนก่อน +5

    Man I aspire to understand math this well one day. I don’t know how to do any of this but the way you work and alter the math so intricately is beautiful

  • @TheEndlessVoid-f6b
    @TheEndlessVoid-f6b 2 หลายเดือนก่อน +5

    I HAVE NEVER BEEN SO PROUD OF MYSELF USING THE SAME EXACT WORKING OUT IN THE VIDEO

  • @alt_account4866
    @alt_account4866 5 หลายเดือนก่อน +4

    Really good video! Even though I'm not that good with math, I find you videos really understandable!

  • @peterpeter4134
    @peterpeter4134 6 หลายเดือนก่อน +8

    Excellent explanation! You are even better than some math professors!🎉

    • @PrimeNewtons
      @PrimeNewtons  6 หลายเดือนก่อน +5

      Haha. That's hard to prove.

  • @BartBuzz
    @BartBuzz 6 หลายเดือนก่อน +39

    Watching this video was mesmerizing! Now, I want to know what that infinite series converges to.

    • @PrimeNewtons
      @PrimeNewtons  6 หลายเดือนก่อน +35

      1.29129

    • @BartBuzz
      @BartBuzz 6 หลายเดือนก่อน +26

      @@PrimeNewtons Thanks! I'm 79 and still learning!

    • @geertfdevries9518
      @geertfdevries9518 5 หลายเดือนก่อน +3

      do a spreadsheet, it converges very fast, after some six terms to 1.291286

    • @ahalfemptycup
      @ahalfemptycup 5 หลายเดือนก่อน +1

      I appreciate you all's scientific curiosity, but what is the point of computing the numerical value of a converging series if you can't prove its convergence, can't write it in simple terms usually involving natural numbers and usual constants and without having a manual method of solving the series.

    • @eng954
      @eng954 5 หลายเดือนก่อน +1

      @@BartBuzz Same here..i am 70.

  • @ricardoneves5094
    @ricardoneves5094 3 หลายเดือนก่อน

    amazing!! beautiful result!

  • @rayhanalam9651
    @rayhanalam9651 3 หลายเดือนก่อน

    The video felt very interactive because instead of directly showing us the solution, you walked us through the problems by showing us the various ways you tried to approach the problem.

  • @VenkateshSundararajan-tr6ve
    @VenkateshSundararajan-tr6ve 5 หลายเดือนก่อน +6

    very beutifully done. i just love the way you put up an act of a few fumble here and there - fumbling like any average student would. Please do a video on tests for convergence. the answer for this integral converges to approx 1.29129. i would have preferred if you had finished off the video with a quick evaluation of the infinite sum - may be calculating 5 or 6 terms to show how quickly this converges. from a student perspective she is going to demand the value of the infinite sum at the final answer. ofcourse if i were the techer i would have said “thats left as an exercise”😅😅😅

  • @malayrojak
    @malayrojak 5 หลายเดือนก่อน +3

    Well the ending was a Revelation! Thanks for sharing!

  • @marasw
    @marasw 5 หลายเดือนก่อน +1

    most intellectual 20 minutes & 36 seconds of my life. Thanks

  • @Budgeman83030
    @Budgeman83030 หลายเดือนก่อน

    This is one of those videos that I don’t have enough math background to understand what is going on but my fascination with math keeps me watching

  • @jakehobrath7721
    @jakehobrath7721 3 หลายเดือนก่อน

    Hey PN, you’re getting a lot of attention from other channels lately. It’s well deserved brother, god bless you and your work.

  • @tangential-research-ql5yd
    @tangential-research-ql5yd 5 หลายเดือนก่อน

    Pleasant videos! I'll have to spend some hours to understand all the details here, but I think I'll set aside an evening for just that!

  • @markorletsky5976
    @markorletsky5976 5 หลายเดือนก่อน +2

    That made my Sunday evening pleasant.

  • @samoraco2960
    @samoraco2960 3 หลายเดือนก่อน +1

    This Professor is genius

  • @ЯНеДымок
    @ЯНеДымок 4 หลายเดือนก่อน

    I’ll be honest I have no idea why someone would ever want to learn how to do these kind of integrals, as I don’t see a reason to use them anywhere in real life problems, but I recognise your math skills to be a thousand times better than mine, and your videos to be a lot helpful to get ready for Math exams at uni, so, kudos.

  • @michelle5for
    @michelle5for 2 วันที่ผ่านมา

    Much love from Australia. What a cliffhanger hahaha. Thanks

  • @stefanstraetmans2885
    @stefanstraetmans2885 12 วันที่ผ่านมา

    You are a great teacher, congrats!

  • @_PEPSISUCKS
    @_PEPSISUCKS 2 หลายเดือนก่อน

    4:03 😂😂😂
    I'm dead. I havent laughed that hard in a math video in a long time. Hahahaha 😆 😂 😆
    But for real... I hate this problem... sometimes I wish math was easier.

  • @fmga
    @fmga 4 หลายเดือนก่อน

    You draw your xs so perfectly

  • @benoitdecrevoisier
    @benoitdecrevoisier หลายเดือนก่อน +1

    Véritablement magnifique ! Merci pour cette brillante résolution.

  • @suryaeffendy1152
    @suryaeffendy1152 3 หลายเดือนก่อน

    Your voice is soothing

  • @95nishanth
    @95nishanth 3 หลายเดือนก่อน

    You earned a subscriber bro. Hats off

  • @jidraffgithendu7546
    @jidraffgithendu7546 หลายเดือนก่อน

    I tell you this is wonderful piece of Maths

  • @MathHakim1
    @MathHakim1 3 หลายเดือนก่อน

    Great, yet easy presenting approach.I like your channel.

  • @9645kanava
    @9645kanava 5 หลายเดือนก่อน +1

    Top quality! Grateful for this teaching!

  • @epsilonxyzt
    @epsilonxyzt 6 หลายเดือนก่อน +1

    Never Stop Teaching!

  • @user-kc4dj8mb6m
    @user-kc4dj8mb6m 4 หลายเดือนก่อน

    This guy explained math in a very detailed way.

  • @bawatabetando6902
    @bawatabetando6902 2 หลายเดือนก่อน

    You know your stuff Man.
    Keep on.

  • @Jeremy-i1d
    @Jeremy-i1d 5 หลายเดือนก่อน +1

    Thank you for another wonderful video and what a beautiful and fascinating result.
    As an alternative approach. I had the idea of trying to compute the Riemann sum for the integral:
    Lim as n tends to infinity of
    the sum from r = 1 to n of
    1/n*(r/n)^~(r/n)
    directly. But so far I have not been able to do this.
    I also had the idea of proving the result you found by considering the difference between this sum, re expressed in the form:
    lim as n terns to infinity of the sum from r = 1 to n of r^-r
    and the above Riemann sum
    This is potentially easier I think, by establishing an upper bound, in terms of n, on the mod of this difference, and then showing that this bound is 0 in the limit as n terms to infinity. But so far I have not been able to do this either.
    I would be interested if you or others know if either of these alternative approaches can be made to work for this particular problem.
    Again, than you for your blessed and inspirational videos ❤

  • @ultrasteamcarpetcleaning3207
    @ultrasteamcarpetcleaning3207 6 หลายเดือนก่อน

    WOW!! Outstanding!! I did not foresee a Gamma Function was going to be applied.

  • @anmolofficial7483
    @anmolofficial7483 หลายเดือนก่อน

    a beautiful subject with dashing teacher

  • @Toldasor
    @Toldasor 5 หลายเดือนก่อน

    Very interesting problem and clear explanation. Also you have such a lovely voice

    • @geertfdevries9518
      @geertfdevries9518 5 หลายเดือนก่อน +1

      and such perfect handwriting on blackboard ! A joy to behold.

  • @Al-Shorman
    @Al-Shorman 6 หลายเดือนก่อน +20

    And the sum from (k=1) to ∞ of [k^(-k)] = 1.29128599706
    and thx for the great video

  • @omograbi
    @omograbi หลายเดือนก่อน

    There must be a continuation, you must evaluate the sum whether it converges or diverges, which it is converging. The irony of this answer that it resembles the original sum so that if we try to evaluate it by method of integration we end up with the same integral.

  • @kushagrasahgal
    @kushagrasahgal หลายเดือนก่อน +1

    Thats phenomenal sir thank you but what to do with the infinite series

  • @Naomi_stephy
    @Naomi_stephy 6 หลายเดือนก่อน

    Hooooo , hermoso , me quedé pegada viendo, que lindas son las matemáticas❤

  • @krit05007
    @krit05007 5 หลายเดือนก่อน

    LOVE YOU DUDE

  • @MassinNissa-nn2xx
    @MassinNissa-nn2xx 3 หลายเดือนก่อน

    Thx for the dominate convergence theorem

  • @alltronics1337
    @alltronics1337 6 หลายเดือนก่อน +4

    19:10 Isn’t the integral equal to (n-1)!, because it is gamma(n). But previously you established gamma(n+1) as equal to n! and not (n+1)!

    • @justcommenting5117
      @justcommenting5117 6 หลายเดือนก่อน +1

      I was wondering the same thing

    • @asparkdeity8717
      @asparkdeity8717 6 หลายเดือนก่อน +5

      No, the integral is n! since:
      Γ(z) = (z-1)! = ∫[0 to ∞] t^(z-1) e^(-t)dt
      i.e. Γ(z+1) = z! = = ∫[0 to ∞] t^z e^(-t)dt
      The power of the integrand is itself shifted in the definition of the Γ function

  • @mohammadjavadkhalilian4341
    @mohammadjavadkhalilian4341 23 วันที่ผ่านมา

    Never give up 💪🏻

  • @13579YOOTUBE
    @13579YOOTUBE 15 วันที่ผ่านมา

    Excellent.
    Can it be integrated if it is indefinite?

  • @AndrejPanjkov
    @AndrejPanjkov 5 หลายเดือนก่อน +1

    I'd approach it via the lambert W function. If that pays off, then your result gives an interesting expansion for W(x)

  • @MinhNguyen-ij5md
    @MinhNguyen-ij5md 5 หลายเดือนก่อน +1

    Not sure that I understood everything but it's awesome!

  • @abd_cheese7353
    @abd_cheese7353 3 หลายเดือนก่อน

    This man is like the bob ross of calculus!

  • @tanguss06
    @tanguss06 4 หลายเดือนก่อน

    Thanks a lot for you vidéo from France 🇫🇷
    Well explained 👌🏼

  • @MeiziVu
    @MeiziVu 6 หลายเดือนก่อน +2

    Love uuuu ❤

    • @PrimeNewtons
      @PrimeNewtons  6 หลายเดือนก่อน

      Love uuuu tuuu

  • @joefreiburg2716
    @joefreiburg2716 5 หลายเดือนก่อน

    Einfach genial!! Und so was von unterhaltsam 🙂 (Genius and best Entertainment!!)

  •  4 หลายเดือนก่อน

    from Morocco thank you for your clear wonderful explanations

  • @HadestheCoat
    @HadestheCoat 2 หลายเดือนก่อน

    Amazing solutions. I felt like I was watching the crucial scene of John Wick. (Last sentence translated.)

  • @محمدالنجفي-ظ1ه
    @محمدالنجفي-ظ1ه 4 หลายเดือนก่อน +2

    God this is epic

  • @johnplong3644
    @johnplong3644 6 หลายเดือนก่อน

    I have not done calculus in over 40 years .This is beyond what I am currently capable of doing.I am College level Algebra I couldn’t pass pre-calculus / Trigonometry right now .

  • @arararara2382
    @arararara2382 4 หลายเดือนก่อน +1

    Well, you need to prove the uniform convergence of that series to be able to switch integral ans series sum.

  • @edisonnogalesantezana4761
    @edisonnogalesantezana4761 3 หลายเดือนก่อน

    "now, can this be easily integrated?... no :("

  • @tanelkagan
    @tanelkagan 5 หลายเดือนก่อน +2

    Fascinating video about the process but I'm not quite sure what we achieved - given the form of the solution looks so very similar to the original integral 🤔

    • @Grecks75
      @Grecks75 5 หลายเดือนก่อน +3

      In terms of computing the integral's value? Not much (if anything at all). But the result looks very interesting _because_ of the similarity.

  • @cesarluis6335
    @cesarluis6335 3 หลายเดือนก่อน

    Pretty funny and pretty beautiful.

  • @DJ_Kamenskuy
    @DJ_Kamenskuy 6 หลายเดือนก่อน

    Very interesting ! Thank you for your solution

  • @CharlesAbernathy-u6r
    @CharlesAbernathy-u6r 5 หลายเดือนก่อน +1

    Can you teach a full course on calculus from beginning through Cal III?

    • @PrimeNewtons
      @PrimeNewtons  5 หลายเดือนก่อน

      That is my new goal. I'm working on it

  • @NachiketVartak
    @NachiketVartak 3 หลายเดือนก่อน +1

    You just did something called discretisation. You essentially converted an integral of a continuous function 1/x^x to a sum of the same function of n+1 where n is an integer.

  • @aljawad
    @aljawad 6 หลายเดือนก่อน

    That was a juicy one! ❤

  • @kquat7899
    @kquat7899 5 หลายเดือนก่อน +1

    Sloane's constant ~ 1.29...

  • @Misteribel
    @Misteribel 6 หลายเดือนก่อน +2

    So, we go from one over x to the x, and the integral from 0 to 1 of that equals the sum of k=1 to infinity of k to the minus k, which is one over k to the k. But what does this approximate? You've rewritten a finite integral into an infinite sum (of the same function), but that's only one step.

    • @zzambezi1959
      @zzambezi1959 5 หลายเดือนก่อน

      But the infinite sum is always defined as a limit, which is in this case a certain (finite) constant, I think.

    • @alexwarner3803
      @alexwarner3803 4 หลายเดือนก่อน

      ​@@zzambezi1959Wolfram Alpha gave the finite answer of:
      ≈1.29128599706266

  • @petermaling943
    @petermaling943 4 หลายเดือนก่อน

    It’s more than half a century since I last studied maths, but I’m still a bit wary of your answer. I think you need to show that that series actually exists and is well defined. Unfortunately I can’t remember the conditions for convergence.

  • @abhijitbhattacharya8377
    @abhijitbhattacharya8377 15 วันที่ผ่านมา

    On simpler terms..... Is ut not just the discrete identity of the continuous integral? May be nowadays with cimputational capability the continuous integral is reduced to just a notation.....

  • @raoufbenallegue7290
    @raoufbenallegue7290 3 หลายเดือนก่อน

    so int 0 -> 1 x^(-x) = sum 1 -> inf x^(-x) *mindblowing*

  • @NChapaWI9436
    @NChapaWI9436 3 หลายเดือนก่อน

    The mathematical delinquency in me wants to just set u=x^x even tho i know that is one of the worst things you could do lmao

  • @hasansawaf8616
    @hasansawaf8616 5 หลายเดือนก่อน

    love it ❤

  • @DileepaSumathipala-go8sl
    @DileepaSumathipala-go8sl หลายเดือนก่อน

    Really intersting..good job

  • @Sayan_Shankhari
    @Sayan_Shankhari 19 ชั่วโมงที่ผ่านมา

    bro ended with discrete inverse tetration sum while solving continuous inverse tetration sum 🤣🤣🤣

  • @dronevluchten
    @dronevluchten 6 หลายเดือนก่อน

    I agree with @misteribel that you replaced one riddle with another one. And solving that one, gives the first again. The only thing (okay, a great find) you showed is that some finite integral of x to the power -x can be replaced by an infinite sum of more or less the same function.
    What I missed in this video is what in fact is the meaning or consequence of this result.

    • @sovietwizard1620
      @sovietwizard1620 6 หลายเดือนก่อน

      It's the non-closed form solution for the definite integral thats much easier to evaluate than the integral by itself.

  • @sckani3432
    @sckani3432 หลายเดือนก่อน

    Wonderful solution by Mathematical manipularon. Thank you, sir. S Chitrai Kani.

  • @johanneshagel3609
    @johanneshagel3609 5 หลายเดือนก่อน

    Thank you, this was a perfect presentation, congratulations! One question still remains: Is there a closed expression for
    sum_(k=1)^infinity(k^(-k)) ? It can easily numerically be computet but the question would be, if this number can be expressed as a multiple of pi , e or whatever. Would be very interesting to know!

  • @RaghuvaranGanesan
    @RaghuvaranGanesan 19 วันที่ผ่านมา

    At 15:15, I don't see why e^(n+1) is moved out as a constant. Then, the answer becomes immediately, sum n=0 to n=inf e^(n+1). Use of "r" seems overkill.

    • @13579YOOTUBE
      @13579YOOTUBE 15 วันที่ผ่านมา +1

      How?
      n+1 is here multiplied by t not in addition
      So we cant separate powers of e as you are mentioning
      Look carefully

  • @Ben-u8w
    @Ben-u8w 6 หลายเดือนก่อน +1

    me don't understand anything but just wants to watch it

  • @royprasad
    @royprasad 5 หลายเดือนก่อน

    Wow. My compliments!

  • @a4edits709
    @a4edits709 6 หลายเดือนก่อน

    Hey newtons, I’m a 10 year old learning calculus, I know a lot (not like a whole college course) I’ve started Calculus 3, So I need help and my exams are there too. everything’s to me is easy. I started in February of my advanced mathematics learning when I was 9.

  • @shevchyc
    @shevchyc 4 หลายเดือนก่อน +1

    I'm a little bit confused. He started with an integral[0,1] of x^(-x) and ended up with a sum, that basically is sum[1,infinity] of x^(-x) 🤔 what's the clue?

  • @INFERNO_GAMER1
    @INFERNO_GAMER1 6 หลายเดือนก่อน +1

    Beautiful

  • @faresadayleh488
    @faresadayleh488 4 หลายเดือนก่อน

    Thanks for the great illustration, however I'm not sure what has been achieved here, all I can notice that the original integral is replaced by the sum of the similar function, which is basically the integration 🤔
    Not sure if I'm seeing the full picture here!

  • @johannkarrer2823
    @johannkarrer2823 6 หลายเดือนก่อน +1

    Chapeau 👌🙏👍

  • @oniondeluxe9942
    @oniondeluxe9942 5 หลายเดือนก่อน

    Could you do a more elaborate video on when you can swap an integral and a sum, and when you cannot? Preferably with some examples.

    • @alexwarner3803
      @alexwarner3803 4 หลายเดือนก่อน

      Check out Dominated Convergence, monotone convergence, Fubini/Tonelli theorem(s),

    • @oniondeluxe9942
      @oniondeluxe9942 4 หลายเดือนก่อน

      @@alexwarner3803 link to video?

    • @alexwarner3803
      @alexwarner3803 4 หลายเดือนก่อน

      @@oniondeluxe9942 can't link on YT. It deletes the comment

    • @alexwarner3803
      @alexwarner3803 4 หลายเดือนก่อน +1

      @oniondeluxe9942 and, I just read the Wikipedia articles and got their sources and tracked down texts tbh. They are in most analysis books probably.
      Fubini's was in My calc 3 text book, but Patrick JMT has a video on it if I remember correctly

    • @alexwarner3803
      @alexwarner3803 4 หลายเดือนก่อน

      @oniondeluxe9942 sry I don't have more info.

  • @cahlelnegnaclklmen8446
    @cahlelnegnaclklmen8446 3 หลายเดือนก่อน

    14:36 how is flipping the integral by the negative sign even a step? They means the same, both mean the definite integral from 0 to infinite, I don't understand at all

    • @Slitherman96
      @Slitherman96 3 หลายเดือนก่อน

      In integration the order of the numbers matter and when you reverse the numbers you get the negative of the value.

  • @82rah
    @82rah 6 หลายเดือนก่อน +1

    Wow! Great job.

  • @ManojkantSamal
    @ManojkantSamal 5 หลายเดือนก่อน

    {1/(-x+1)}.(x)^(-x+1)
    The upper limit
    (1/0).(x)^0=infinite
    Lower limit
    1.x=x=0
    Infinite -0=infinite

  • @XAnshTheGamerX
    @XAnshTheGamerX 3 หลายเดือนก่อน +1

    never in my life did i think i would sit and watch such a crazy integral be solved yet here i am. amazing