Find area of Green shaded Triangle | Square and Equilateral triangle | Important skills explained

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ธ.ค. 2024

ความคิดเห็น • 67

  • @SAHIRVLOGCLP
    @SAHIRVLOGCLP ปีที่แล้ว +3

    Thank you for your sharing 👍

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks for visiting
      Kind regards

  • @soli9mana-soli4953
    @soli9mana-soli4953 ปีที่แล้ว +7

    Once I knew that PB = 4 I tried to calculate the height of the triangle PBT by drawing the perpendicular to BE from the point T, which I called TH. Since the angle TBE is 60° the right triangle BHT is of the type 30°,60°,90°, then
    if BH = X (height of PBT)
    TH = X√ 3
    I then calculated the value of X by noting that the triangles PBE and HET are similar. In fact, they have a common angle and are right angles. So
    PB : TH = BE : HE
    4 : X√ 3 = 8 : (8 - X)
    X = (16√ 3 - 8)/11 (PBT triangle height)
    Area = 1/2* 4 * (16√ 3 - 8)/11 = (32√ 3 - 16)/11

  • @tombufford136
    @tombufford136 ปีที่แล้ว

    Thank you for doing these with all the accuracy and explanation.

  • @davidellis1929
    @davidellis1929 ปีที่แล้ว +4

    This is another problem that yields easily to coordinate geometry. Set B=(0,0), E=(8,0) and P=(0,4). Because FBE is 60 degrees, F=(4,4*sqrt(3)). The lines containing PT and BF have equations x+2y=8 and y=x*sqrt(3). Solving this system for x, we see their intersection point T has an x-coordinate value of 8/(2*sqrt(3)+1), which is the length of the altitude from T to PB. Double this to get the area of the green triangle, since base PB=4.

  • @theoyanto
    @theoyanto ปีที่แล้ว

    Another great piece of work, thanks again 👍🏻

  • @tombufford136
    @tombufford136 ปีที่แล้ว +2

    Yes, the final discrepancy in my answer is from triangle PTB not being a right angled triangle. I assumed it was. In your solution you formed a right angled triangle to calculate the height using Side PB as the base. This explains the more complicated workings required.

  • @misterenter-iz7rz
    @misterenter-iz7rz ปีที่แล้ว +1

    Inspired by your beautiful solution, I attempt to offer a shorter solution, let A be the area of the area of the green triangle, so the area of the adjacent yellow triangle is 2 sqrt(3)A, thus 16=(1+2sqrt(3))A, or A=16/(1+2sqrt(3)).😅

  • @wackojacko3962
    @wackojacko3962 ปีที่แล้ว

    I love rationalizing radicals in the denominator by multiplying by the conjugate . One of the best concepts of mathematics in my opinion. 🙂

  • @KAvi_YA666
    @KAvi_YA666 ปีที่แล้ว

    Thanks for video.Good luck sir!!!!!!!!!

  • @waheisel
    @waheisel ปีที่แล้ว

    Great puzzle. Thanks PreMath 😊

  • @HappyFamilyOnline
    @HappyFamilyOnline ปีที่แล้ว

    Great explanation👍
    Thanks for sharing😊

  • @misterenter-iz7rz
    @misterenter-iz7rz ปีที่แล้ว +6

    Lovely mathematical figure, it is not too difficult, but I am afraid the computation is a bit cumbersome, as we have the exact figures of the green triangle, one side is 4, two angles are 30, arctan 2=63.435, so the last angle is 86.565, so opposite side is 4xsin(63.435)/(sin 86.565)=3.58415, thus the area is 4x3.58415/4=3.58415.😅

  • @murj617
    @murj617 ปีที่แล้ว +1

    Where do we know that its an equilateral triangle and not an isosceles traingle?

  • @vara1499
    @vara1499 ปีที่แล้ว

    Sir, another lengthy problem. Where do you source them?

  • @tombufford136
    @tombufford136 ปีที่แล้ว

    Looking at this Triangles PBE and DAE are right angled and similar with P as diagnal mid point of the rectangle. Triangle FBE is equilateral with angles 60 degrees. Hence PB is 4 units and angle PBT is 30 degrees . sin(30) =0.5 .PT = 2 and BT = sqrt(16 -4) = 3 * sqrt(3). Triangle area is 0.5 base* height = 0.5 * 3 * sqrt(3) * 2 = 3 sqrt(3).

  • @tombufford136
    @tombufford136 ปีที่แล้ว

    Yes, the sqrt(16-4) = sqrt(4*3) = 2sqrt(3). I now have 3.4641

  • @jonathancapps1103
    @jonathancapps1103 ปีที่แล้ว

    5:00 At this pointcan't you show that △PBT is similar to △DEA?
    Then DE is easily derived, and you know PB. So you could find PT and TB via ratio, right?

    • @murdock5537
      @murdock5537 ปีที่แล้ว

      This is not the case. δ ≠ φ → AED = δ ≈ 26,565°; PBT = φ = 30°→
      EDA ≈ 63,435° = 3φ - δ ≠ 2φ = 60° = TBE 🙂

  • @rachidmeknassi3709
    @rachidmeknassi3709 ปีที่แล้ว +2

    Plese how do you see that the angle is 60degres

    • @PreMath
      @PreMath  ปีที่แล้ว +2

      Dear Rachid, all three sides are equal! Sum of angles in a triangle is 180 degrees. Therefore, each angles is 180/3 degrees => 60 degrees
      Thanks for asking. Cheers

    • @Brunayres1
      @Brunayres1 ปีที่แล้ว +1

      We don’t have this information. I see the lenght of two sides.

  • @flesby
    @flesby 10 หลายเดือนก่อน

    1. Note that AE = 16 and AD = 8. Therefor DE must bisect CB in half at P, since CB is perpendicular to AE and hits AE in the middle at B AB = BE = 8. Thus CP = PB = 4
    2. Angle PBT is 30 degrees as explained in the video.
    3. Since the angle in C is 90 degrees and DC = 8 and CP = 4 you can solve for the angle DPC = 63,435 degrees since BPT and DCP are opposing angles they must be of the same Value.
    4. Now you have 3 measurements of triangle PTB (Angle - Side - Angle) => 63,434 degrees, PB = 4 and 30 degrees. You can calculate all the remaining values using trigonometric formulae.

  • @romilsonmagalhaes6487
    @romilsonmagalhaes6487 ปีที่แล้ว +1

    Very cool

  • @ybodoN
    @ybodoN ปีที่แล้ว

    When the length of PB was briefly inserted under PB in equation 1, we could already conclude that the area of △ PBT = TB...

  • @misterenter-iz7rz
    @misterenter-iz7rz ปีที่แล้ว +1

    First to add like 😮.

    • @PreMath
      @PreMath  ปีที่แล้ว

      So nice of you.
      Thank you! Cheers! 😀

  • @spiderjump
    @spiderjump ปีที่แล้ว

    i used coord geometry

  • @rc_youtubeaccount1331
    @rc_youtubeaccount1331 ปีที่แล้ว

    similar triangle, 8*8/2*sqrt(5)

  • @jimlocke9320
    @jimlocke9320 ปีที่แล้ว

    Drop perpendicular from T to BE and call the intersection H. Let distance HE be x. Note that right ΔDAE and ΔTHE are similar and the ratio of the short side to the long side is 1/2, so TH has length x/2. ΔBTH is a special 30°-60°-90° right triangle, its long side is √3 times as long as its short side, so length BH = x/(2√3). However, length BH is also 8-x, so 8-x=x/(2√3). Doing the algebra, x=(96-(16√3))/11. Length BH=8-x=((16√3)-8)/11. We note that, if we treat PB as the base of ΔPTB, BH is equal to its height. So, area of ΔPTB=(0.5)(4)((16√3)-8)/11=16(2√3-1)/11, as PreMath also found.

  • @lk-wr2yn
    @lk-wr2yn ปีที่แล้ว

    Is that correct? ((4*cos(30))*(4*sin(30)))/2

  • @29brendus
    @29brendus ปีที่แล้ว

    Ab equilateral traingle should have been specified from the very beginning by hatching each side.

  • @nehronghamil4352
    @nehronghamil4352 ปีที่แล้ว

    alternate solution (long but gets it done) :
    from congruence triangle DCP=triangle EBP
    CP = PB = 8/2 = 4
    Agreen = 1/2 * 4 * sin(30) * BT = BT (1)
    let a = angle PEB
    Agreen = 1/2 * 8 * sin(a) * PT (2)
    from (1)&(2):
    BT = 4 * sin(a) * PT (3)
    sin(a) = 4 / (4^2 + 8^2) ^.5 = 1/(5)^.5 (4)
    cos(a)= (1-sin(a)^2)^.5 = 2/(5)^.5
    let c= 1/(5^.5)
    let d=3^.5
    from (3)&(4):
    BT = 4 * sin(a) * PT = 4c * PT
    let b = angle PTB b = a+60
    cos(b) = cos(60) * cos (a) - sin(a) * sin(60)
    = (1/2) * (2 c) - c * d/2 = [c-cd/2]
    from law of cosines:
    BT^2 + PT^2 - 2 * BT * PT * cos(b) = 4^2
    (4c * PT)^2 + PT^2 - 2 * (4c * PT) * PT * [c-cd/2] = 4^2
    [16 * c^2 + 1 - 8 * c^2 + 4 * c^2 * d] * PT^2 = 16
    [8 * c^2 + 4 * c^2 * d +1] * PT^2 =16
    [13/5 + 4 * 3^.5/5] * PT^2 = 16
    PT=(80 / (13+4*3^.5))^.5
    A = 4 * sin(a) * PT = 4 * (1/(5)^.5) * [(80 / (13+4*3^.5))^.5]
    = 16/(13 + 4 * 3^.5)^.5
    = 3.5841

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว +1

    Agreen=16-(4/11)(48-8rad3)=3,584.…

    • @PreMath
      @PreMath  ปีที่แล้ว

      Great!
      Thank you! Cheers! 😀

  • @Su4ji
    @Su4ji ปีที่แล้ว

    Area DCP = Area PBE=16
    TE=SQRT(8^2 - 4^2)
    TE= 4V3
    Area TBE = 1/2 *4*4V3
    =8V3
    Area of the green=16-8V3
    = 16 - 13,85 = 2,15

    • @acte1313
      @acte1313 ปีที่แล้ว

      caution 2nd line false TB not = 4 it's PB

  • @eliasgiannakopoulos4005
    @eliasgiannakopoulos4005 ปีที่แล้ว

    4

  • @tombufford136
    @tombufford136 ปีที่แล้ว

    My answer done quickly is higher so i'll check it over and reconfirm.

  • @CharlesWeiss-e4c
    @CharlesWeiss-e4c 8 หลายเดือนก่อน

    Only problem is angle PBT is 26.57 degrees not 30.

  • @halitiskender1324
    @halitiskender1324 ปีที่แล้ว

    Başka yol yok mu

  • @فراسمعابره-ج5خ
    @فراسمعابره-ج5خ 7 หลายเดือนก่อน

    Green area =5.5cm

  • @honestadministrator
    @honestadministrator ปีที่แล้ว

    angle BPT = angle ADE
    = arc tan (1/2)
    = arc sin ( 1/√5)
    sin (PTB)
    = sin ( 30° + angle TPB)
    = (1*2 + √3)/ ( 2 √5)
    TB /PB
    = (1/√5)/[ (1*2 + √3)/ ( 2 √5)]
    = 2 / ( 2 + √3) = (4 - 2 √3)
    Hereby TB = AB (2 -√3)
    [ ∆ PBT ]
    = AB^2 ( 2 - √3) sin(30°) /2
    = AB^2 ( 2 - √3) /4

    • @nehronghamil4352
      @nehronghamil4352 ปีที่แล้ว

      angle BPT = atan(2/1)
      What is AB? ,Area?

    • @honestadministrator
      @honestadministrator ปีที่แล้ว

      @@nehronghamil4352 AB is the side of the square. For present problem put 8 unit for AB to get the area

  • @aimilios321
    @aimilios321 ปีที่แล้ว +2

    why FBE triangle is equilateral???!!!!!!!!!!!

    • @JasperJones-jq7yh
      @JasperJones-jq7yh ปีที่แล้ว

      It was mentioned verbally only.

    • @1ciricola
      @1ciricola 6 หลายเดือนก่อน

      It’s in the title of the problem, under the problem/drawing.

  • @A_MIGHTY
    @A_MIGHTY ปีที่แล้ว +1

    Second comment

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      So nice of you.
      Thank you! Cheers! 😀

  • @prof.isaquecosta
    @prof.isaquecosta ปีที่แล้ว

    This playlist shows 3 different solutions to this problem:
    th-cam.com/video/NDSDhzi3hHs/w-d-xo.html

  • @quigonkenny
    @quigonkenny 9 หลายเดือนก่อน

    Game plan:
    • Find distance from BC to T. This will be the height h in the calculation of the area of triangle ∆TPB.
    • Find length of PB. This will be the base b in the calculation of the area of triangle ∆TPB.
    • Alternately, finding the areas of ∆PCD and ∆FTE will let us determine the area of ∆TPB from the areas of the three major polygons in the construction.
    By observation, ∆DAE and ∆PBE share an angle at E, have 90° angles along AE, and have parallel sides in DA and PB. ∆DAE and ∆PBE are similar.
    Triangle ∆PBE:
    DA/AE = PB/BE
    8/16 = b/8
    b = 8(8)/16 = 4
    Drop a perpendicular from T to BE at G. By observation ∆TGE is similar to ∆PBE and, as a right triangle constructed from an equilateral triangle, ∆BGT is a 30-60-90 special triangle. As BG = h, GE = 8-h. As ∆BGT is a 30-60-90 special triangle, TB = 2h and GT = h√3.
    Triangle ∆TGE:
    TG/GE = PB/BE
    h√3/(8-h) = 4/8 = 1/2
    2h√3 = 8-h
    h(2√3 +1) = 8
    h = 8/(2√3 +1) = 8(2√3 -1)/(12-1)
    h = (8/11)(2√3 -1)
    Triangle ∆TPB:
    A = bh/2 = 4(8/11)(2√3 -1)/2
    A = (16/11)(2√3 -1) ≈ 3.58

  • @barouchkrakauer7815
    @barouchkrakauer7815 ปีที่แล้ว

    FB = 8 ??

  • @clivemitchell3229
    @clivemitchell3229 ปีที่แล้ว

    I think this may be incorrect. Angle AED is not 30° but rather arctan 8/(8+8) which is approximately 26.565°. Thus triangles PTB and BTE are not similar and angle PTB is not a right angle. Sorry.

    • @iberg
      @iberg ปีที่แล้ว

      TB is 4, not PB

    • @clivemitchell3229
      @clivemitchell3229 ปีที่แล้ว

      Ah, got mixed up as to which triangles were similar!

  • @aimilios321
    @aimilios321 ปีที่แล้ว +1

    why FE=BE=FB????

  • @iodian
    @iodian 11 หลายเดือนก่อน

    This is incorrect. The triangle is not equilateral.

  • @vierinkivi
    @vierinkivi ปีที่แล้ว

    Todella mielenkiintoinen tehtävä ja otti aikaa löytää "yksinkertainen" ratkaisu.
    DE alenee .5 yksikköä edetessään oikealle. kolmion kylki BF nousee sqrt3 yksikköä adetessään oikealle.
    Yhteensä lähenevät toisiaan .5+sqrt3.
    Leikkauspisteen etäisyys viivasta CB on 4/(.5+sqrt3)
    Kolmion ala A = .5*4*4/(.5+sqrt3)