Can you find area of the Rectangle? | (Justify your answer) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 31 ธ.ค. 2024

ความคิดเห็น • 83

  • @SkinnerRobot
    @SkinnerRobot หลายเดือนก่อน +2

    Wow! You presented a brilliant solution. Thank you, PreMath.

    • @beiranvand4066
      @beiranvand4066 หลายเดือนก่อน

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Glad to hear that!
      You are very welcome!
      Thanks for the feedback ❤️

  • @onyemaechiepelle4302
    @onyemaechiepelle4302 หลายเดือนก่อน +2

    This is your teaching I enjoyed most; thanks.

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      You are very welcome! Thanks for the feedback ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq หลายเดือนก่อน +2

    The big rectangle is an enlargement of 7*5 rectangle .
    To divide the big rectangle in three equal areas,
    we have to get trice of length and breadth of 7*5 rectangle
    It means the length and breadth of the big rectangle will be
    7*3=21 and 5*3=15
    Area of rectangle =21*15=315 sq units.

  • @andrewrose3830
    @andrewrose3830 หลายเดือนก่อน +3

    The central shape can be split into two triangles with the rectangle diagonal. This diagonal splits rectangle area in half, so must split the central shape in half two. Each triangle has area S/2. Using "area = (base x height)/2", this means FB must be twice 7 (FBC has twice area of FCA) so AB is 21. Similarly, ED is twice 5, so AD is 15. This area is 21*15 or 315.

  • @marioalb9726
    @marioalb9726 หลายเดือนก่อน +6

    S= xy/3 = ½x(y-5) = ½y(x-7)
    ⅔xy = xy -5x
    ⅔y = y-5
    ⅓y = 5 --> y = 15 cm
    ⅔xy = xy -7y
    ⅔x = x-7
    ⅓y = 7 --> x = 21 cm
    A = xy = 15*21 = 315cm² (Solved √)

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      Excellent!
      Thanks for sharing ❤️

  • @allanflippin2453
    @allanflippin2453 หลายเดือนก่อน +4

    I found a very simple approach. I don't see one similar in the comments. My apologies if I missed one.
    1) Draw diagonal AC. This divides the rectangle into two equal-sized triangles.
    2) The total rectangle area is 3S, so each triangle has area 1.5S
    3) Consider triangles ACF and BCF. Both have the same height (BC length), but the area of ACF is half of BCF. That means AF is half the length of BF. Thus BF = 14.
    4) Apply the same idea to ACE and DCE. AE is half the length of ED, so ED = 10.
    5) AB = 7 + 14 = 21. AD = 5 + 10 = 15. Total area = 21 * 15 = 315.

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent! Thanks for sharing your solution.

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 หลายเดือนก่อน +2

    That’s very nice and enjoyable
    Thanks Sir
    You are very good
    With glades
    ❤❤❤❤❤

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      Thanks for the kind words!🙏

  • @jamestalbott4499
    @jamestalbott4499 หลายเดือนก่อน +2

    Thank you! I liked to the exposure to multiple equations when solving.

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @ИванПоташов-о8ю
    @ИванПоташов-о8ю หลายเดือนก่อน +3

    Draw AC. Then Area(ABC)=1,5S, Area(AFC)=0,5S. AF:FB=Area(AFC): Area (FBC)=1:2. So, FB=2AF=14 and AB=21.
    AD=3AE= 15 (the same proof)
    Area(ABCD)=15*21=315

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      Excellent!
      Thanks for sharing ❤️

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l หลายเดือนก่อน +2

    Thanks sir good ❤❤

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      You are very welcome!
      Thanks for the feedback ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq หลายเดือนก่อน +3

    Join AC diagonal. Now triangle ADC =triangle ABC
    >🔺 ADC - 🔺 EDC = 🔺 ABC - triangle FBC
    > 🔺 ACE = 🔺 ACF =S/2
    As ACE=S/2=1/2* base 5, height x
    🔺 EDC =S/2*2=1*2*(2*5)*height x
    So y =5+2*5=15
    Likewise
    x = 7+7*2=21
    Area of the rectangle =15*21=315 sq units

  • @soli9mana-soli4953
    @soli9mana-soli4953 หลายเดือนก่อน +1

    Being XY = 3S
    On 1) X*(Y-5) = 2S
    we have 5X = S
    On 2) Y*(X-7) = 2S
    we have 7Y = S
    tracing a perpendicular from F to DC and a perpendicular from E to BC we split the main rectangle in 4 small rectangles whose areas are:
    1) left high = 5*7 = 35
    2) right high = 5X - 35 = S - 35
    3) left low = 7Y - 35 = S - 35
    4) right low = (X-7)*(Y-5)= XY - 7Y - 5X +35 = 3S - S - S + 35 = 35 + S
    then multiplying crossed rectangles:
    35*(S+35) = (S-35)*(S-35)
    S = 105
    area = 3S = 3*105 = 315

    • @beiranvand4066
      @beiranvand4066 หลายเดือนก่อน

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

  • @imetroangola17
    @imetroangola17 หลายเดือนก่อน +3

    *Apontamento:*
    xy - 5x=2S, xy - 7y=2S e xy+ 7y=4S.
    Ora, xy = 3S. Então:
    3S - 5x=2S, 3S - 7y=2S e 3S+ 7y=4S. Assim,
    S= 5x e S=7y → *x=7y/5.*
    Logo,
    [ABCD] = xy= 7y²/5 e, por outro lado,
    [ABCD] = 3S = 21y. Assim,
    7y²/5 = 21y → y = 15. Portanto,
    [ABCD] = 21×15 = *_315 U.Q_*

    • @beiranvand4066
      @beiranvand4066 หลายเดือนก่อน

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  หลายเดือนก่อน +2

      Excellent!
      Thanks for sharing ❤️

  • @WernHerr
    @WernHerr หลายเดือนก่อน +9

    My solution:1/3 (ABCD) = (ECD), so x*(y-5)/2=x*y/3, 3xy-15x=2xy , xy=15x and y=15, x=21

    • @marcgriselhubert3915
      @marcgriselhubert3915 หลายเดือนก่อน +2

      OK, you obtain y = 15, but you need something else to obtain x. With only one equation you cannot find two unknown values.

    • @WernHerr
      @WernHerr หลายเดือนก่อน +2

      @@marcgriselhubert3915 You are absolutely right. I also used: 1/3 (ABCD) = (FBC) with y*(x-7)/2=x*y/3 and x=21.

    • @beiranvand4066
      @beiranvand4066 หลายเดือนก่อน

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @marcgriselhubert3915
      @marcgriselhubert3915 หลายเดือนก่อน +1

      @@WernHerr OK then.

    • @srimathisubramaniyam9099
      @srimathisubramaniyam9099 หลายเดือนก่อน

      ​@@WernHerrAre you sure
      Area of the three parts are equal

  • @adept7474
    @adept7474 หลายเดือนก่อน

    S(ABC) = 1,5S, S(FBC) = S. AF : BF = AE : DE = 1:2. (7 × 3) × (5 × 3) = 315.

  • @davidellis1929
    @davidellis1929 13 วันที่ผ่านมา

    Simpler: Let x=DC and y=BC. The rectangle's area is xy. Since triangle EDC has area xy/3 and its base DC=x, then its height ED must be 2/3 of AD, so ED:AE=2:1, ED=10 and y=15. Similarly, in triangle FBC, FB:AF=2:1, FB=14 and x=21. The desired area is xy=21*15=315.

  • @murdock5537
    @murdock5537 หลายเดือนก่อน

    Nice! x(y - 5) = y(x - 7) = 2xy/3 → y = 5x/7 → y(x - 7) = 2xy/3 → x - 7 = 2x/3 → x = 21 → y = 15

  • @cyruschang1904
    @cyruschang1904 หลายเดือนก่อน +2

    Rectangle area = 3S = WD = (7 + x)(5 + y)
    y/(5 + y) = 2/3
    3y = 10 + 2y
    y = 10
    x/(7 + x) = 2/3
    3x = 14 + 2x
    x = 14
    Rectangle area = (7 + x)(5 + y) = 21(15) = 315

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      Excellent!
      Thanks for sharing ❤️

    • @cyruschang1904
      @cyruschang1904 หลายเดือนก่อน

      @@PreMath Thank YOU

  • @santiagoarosam430
    @santiagoarosam430 หลายเดือนก่อน +1

    bh/2= S+{5b/2)=S+(7h/2) ---> b=7h/5---> 35n²/3=35n ---> n=3---> b*h=(3*7)*(3*5) =21*15=315.
    Gracias y saludos

    • @beiranvand4066
      @beiranvand4066 หลายเดือนก่อน

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @uwelinzbauer3973
    @uwelinzbauer3973 หลายเดือนก่อน

    Hallo professor!
    I started like this:
    I added an auxiliary line connecting points A and C, dividing quadrilateral AECF into two triangles, making up the equation:
    S=(1/2)*5*x+(1/2)*7*y
    Remaining proceeding similar, three equations with three unknowns, leading to identical results.
    Thanks for sharing this interesting geometric puzzle 👍
    Happy weekend to you and the friends of the channel 😀

  • @marcgriselhubert3915
    @marcgriselhubert3915 หลายเดือนก่อน +1

    With ED = a and FB = b, we have: rectangle area = 3.S = (7 +b).(5 +a); 2.triangle EDC area = 2.S = a.(7 +b); 2.triangle CBF area = 2.S = b.(5 +a).
    We replace (7+ b) by (3.S)/(5+ a) in the second equation and obtain (a.(3.S))/ (5+ a) = 2.S, we simplify by S and obtain (3.a)/(5+ a) = 2 giving a = 10
    In the same way we replace (5+ b) by (3.S)/(7+ b) in the third equation and obtain (3.b)/(7+ b) = 2, giving b = 14
    The side lengths of the rectangle are then AD = 5 + a = 15 and AB = 7 + b = 21, and the rectangle area is 15.21 = 315.

    • @beiranvand4066
      @beiranvand4066 หลายเดือนก่อน

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @JoanRosSendra
    @JoanRosSendra หลายเดือนก่อน

    Otra forma:
    Trazamos la diagonal AC y la mediatriz desde el vértice C de los triángulos CFD y CED
    La figura queda dividida en 6 triángulos y cada uno de ellos tiene la misma área: S/2
    Por tanto, los que tienen la altura "y" han de tener la misma base (7), así que x=7*3=21
    Del mismo modo, los triángulos que tienen la altura "x" han de tener la misma base (5), así que y=5*3=15
    Área solicitada = 21*15 = 315 u²

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 หลายเดือนก่อน

    (5)^2 (7)^2={25+49}=74 {90°A+90°B+90°C+90°D}=360°ABCD/74=4.64 2^2.2^3^2^2 1^1.1^3^1^2 3^2 ((ABCD ➖ 3ABCD+2)

  • @gelbkehlchen
    @gelbkehlchen 21 วันที่ผ่านมา

    Solution:
    a = AB = DC,
    b = AD = BC.
    I look at the lower left triangle. Its area on one side is
    a*(b-5)/2. And because the area of ​​this triangle is 1/3 of the entire rectangle area, the equation applies:
    a*(b-5)/2 = 1/3*a*b |*2/a ⟹
    b-5 = 2/3*b |+5-2/3*b ⟹
    b/3 = 5 |*3 ⟹
    b = 15
    I do the same with the upper right triangle and get the equation:
    (a-7)*b/2 = 1/3*a*b |*2/b ⟹
    a-7 = 2/3*a |+7-2/3*a ⟹
    a/3 = 7 |*3 ⟹
    a = 21 ⟹ Area of ​​the entire rectangle = a*b = 21*15 = 315

  • @aljawad
    @aljawad หลายเดือนก่อน +1

    I solved it simply by using the third equation: 3S =(x)*(y).

    • @beiranvand4066
      @beiranvand4066 หลายเดือนก่อน

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      Thanks for the feedback ❤️

  • @КонстантинМирошниченко-щ5о
    @КонстантинМирошниченко-щ5о หลายเดือนก่อน

    5*x=S 7*y=S y=5*3 (т.к. S 3шт.) x=7*3 (т.к. S 3шт.) y=15 x=21 area=15*21=315

  • @JoanRosSendra
    @JoanRosSendra หลายเดือนก่อน

    Yo tracé una perpendicular desde F al punto G del segmento DC, dividiendo la figura en dos rectángulos.
    El área de FBCG = 2S
    Por tanto el área de AFGD = S
    Si igualamos tenemos que
    (x-7)*y=2(7*y)
    xy-7y=14y
    xy=21y
    x=21
    Igualando las áreas de los triángulos rectángulos:
    (x-7)y/2=(y-5)x/2
    xy-7y=xy-5x
    y=5x/7
    y=5*21/7=15
    Área solicitada = 21*15 = 315 u²

  • @zdrastvutye
    @zdrastvutye หลายเดือนก่อน

    it is once again a nested calculation:
    10 print "premath-can you find area of the rectangle":dim x(5),y(5)
    20 l1=5:l2=7:sw=sqr(l1^2+l2^2)/57:n=l1*l2:goto 130
    30 da1=l2*(l1+l3):da2=l4*(l1+l3)/2:a1=l3*(l2+l4)/2:a2=da1+da2-a1
    40 a3=l4*(l1+l3)/2:dg=(a2-a1)/n:return
    50 l4=sw:gosub 30
    60 l41=l2:dg1=dg:l4=l4+sw:if l4>20*l1 then 110
    70 l42=l4:gosub 30:if dg1*dg>0 then 60
    80 l4=(l41+l42)/2:gosub 30:if dg1*dg>0 then l41=l4 else l42=l4
    90 if abs(dg)>1E-10 then 80
    110 return
    120 gosub 50:df=(a3-a2)/n:return
    130 l3=sw
    140 gosub 120:if l4>20*l1 then else 160
    150 l3=l3+sw:goto 140
    160 l31=l3:df1=df:l3=l3+sw:l32=l3:gosub 120:if df1*df>0 then 160
    170 l3=(l31+l32)/2:gosub 120:if df1*df>0 then l31=l3 else l32=l3
    180 if abs(df)>1E-9 then 170 else print a1,"%",a2,"%",a3:goto 200
    190 xbu=x*mass:ybu=y*mass:return
    200 masx=1200/(l2+l4):masy=850/(l1+l3):if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window.

  • @himo3485
    @himo3485 หลายเดือนก่อน +1

    AD=BC=x AB=DC=y
    ED=x-5 DC=y FB=y-7 BC=x (x-5)y/2=(y-7)x/2
    xy-5y=xy-7x 5y=7x y=7x/5
    AECF=5*7x/5*1/2 + 7*x*1/2 = 7x
    S = 7x S*3 = 7x*3 = 21x = x*7x/5 = 7x²/5 7x²/5 - 21x = 0 7x² -105x = 0 7x(x - 15) = 0 x>0 , x=15
    Rectangle area = 21*15 = 315

    • @beiranvand4066
      @beiranvand4066 หลายเดือนก่อน +1

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq หลายเดือนก่อน +1

    Sir
    3*🔺 CBE(S) =3[1/2*x*(y -5])=.xy (area of rectangle)
    > y =15
    Now3 🔺 CBF
    =3[1/2*y*(x-7)]=xy
    >x =21
    Area of the rectangle =21*15=315 sq units

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @tontonbeber4555
    @tontonbeber4555 หลายเดือนก่อน

    Can you find area of the Rectangle? Answer : yes, I can
    (Justify your answer) : because I'm clever.

  • @pranavamali05
    @pranavamali05 หลายเดือนก่อน +1

    👋

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      Excellent!😀
      Thanks for the feedback ❤️

  • @DB-lg5sq
    @DB-lg5sq หลายเดือนก่อน

    شكرا لكم على المجهودات
    يمكن استعمال
    S(ABCD)= 3S
    S=y(x-7=x(y-5)
    ........
    S(ABCD)=315

  • @phungpham1725
    @phungpham1725 หลายเดือนก่อน

    1/ Label a and b as the width and lenght of the rectangle respectively.
    Focus on the area of the triangle EDC:
    (a-5).b/2=ab/3-> (a-5)/2=a/3-> a= 15
    Similarly, (b-7).a/2= ab/3
    -> b=21
    Area of the rectangle=15x21= 315 sq units😅😅😅

  • @anthonyheaton5798
    @anthonyheaton5798 หลายเดือนก่อน

    3S

  • @Birol731
    @Birol731 หลายเดือนก่อน +1

    My way of solution ▶
    Let's divide the quadrilateral AECF into two triangles :
    ΔAEC + ΔACF
    [AF]= 7
    [FB]= y
    [AE]= 5
    [ED]= x
    A(AECF)= S

    A(ΔAEC)= 5*(7+y)/2
    A(ΔACF)= 7*(5+x)/2

    S= 5*(7+y)/2 + 7*(5+x)/2
    S= (70+5y+7x)/2
    b) the triangle ΔEDC:
    A(ΔAEC)= x*(7+y)/2
    A(ΔAEC)= (7x+xy)/2
    c) the triangle ΔFCB:
    A(ΔFCB)= y*(5+x)/2
    A(ΔAEC)= (5y+xy)/2
    d) A(ΔAEC) = A(ΔAEC) = S
    (7x+xy)/2 = (5y+xy)/2
    7x+xy= 5y+ xy
    5y= 7x
    y= 7x/5
    e) A(AECF)= A(ΔAEC)= S
    (70+5y+7x)/2 = (7x+xy)/2
    70+5y= xy
    y= 7x/5

    70+ 5*(7x/5)= x*(7x/5)
    70+7x= 7x²/5
    both sides multiplied by 5
    350+35x= 7x²

    50+5x= x²
    x²-5x-50=0
    Δ= 25-4*1*(-50)
    Δ= 225
    √Δ= 15
    x₁= (5+15)/2
    x₁= 10
    x₂= (5-15)/2
    x₂= -5 ❌
    x₂ < 0

    x= 10
    y= 7*10/5
    y= 14
    S= (7x+xy)/2
    S= (7*10+10*14)/2
    S= 105 square units
    Arectangle= 3S
    Arectangle= 3*105
    Arectangle= 315 square units ✅

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 หลายเดือนก่อน +1

    315

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 หลายเดือนก่อน +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Let w=AB=CD and h=AD=BC be the width and the height of the rectangle, respectively. Since the triangles BCF and CDE have the same area as the quadrilateral AECF, we can conclude:
    A(ABCD) = w*h = 3*S ⇒ S = w*h/3
    (1) S = w*h/3
    (2) S = A(BCF) = (1/2)*BC*BF = (1/2)*BC*(AB − AF) = (1/2)*h*(w − 7)
    (3) S = A(CDE) = (1/2)*CD*DE = (1/2)*CD*(AD − AE) = (1/2)*w*(h − 5)
    (4) S = A(AECF) = A(ACE) + A(ACF) = (1/2)*AE*CD + (1/2)*AF*BC = (1/2)*5*w + (1/2)*7*h = 5*w/2 + 7*h/2
    The combination of equation (2) and equation (3) results in:
    (1/2)*h*(w − 7) = (1/2)*w*(h − 5)
    h*(w − 7) = w*(h − 5)
    h*w − 7*h = h*w − 5*w
    −7*h = −5*w
    ⇒ w = 7*h/5
    The combination of this result with equation (1) and equation (4) results in:
    w*h/3 = S = 5*w/2 + 7*h/2 = 5*(7*h/5)/2 + 7*h/2 = 7*h/2 + 7*h/2 = 7*h
    ⇒ w = 21
    ⇒ h = 5*w/7 = 5*21/7 = 15
    Now we are able to calculate the area of the rectangle:
    A(ABCD) = w*h = 21*15 = 315
    Best regards from Germany

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @wasimahmad-t6c
    @wasimahmad-t6c หลายเดือนก่อน +1

    S=105)(15×21=315fullarea

    • @beiranvand4066
      @beiranvand4066 หลายเดือนก่อน

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @ΙΩΑΝΝΗΣΣΤΑΥΡΟΥΛΑΚΗΣ-ο5π
    @ΙΩΑΝΝΗΣΣΤΑΥΡΟΥΛΑΚΗΣ-ο5π 29 วันที่ผ่านมา

    I have mentioned that it is a trapezium NOT A TRAPEZOID. Trapezoid is something else. Please correct your videos!

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho หลายเดือนก่อน +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) AF = 7 lin un
    02) FB = X lin un
    03) AB = (7 + X) lin un
    04) AE = 5 lin un
    05) ED = Y lin un
    06) AD = (5 + Y) lin un
    07) Rectangle Area = (AB * AD) sq un ; RA = (7 + X) * (5 + Y) ; RA = (35 +7Y + 5X + XY) sq un
    08) Bottom Triangle [CDE] Area = 2 * S(1) = Y * (7 + X) ; 2 * S(1) = (7Y + XY) sq un
    09) Middle Quadrilateral [AECF] Area = 2 * S(2) = (7 * (5 + Y)) + (5 * (7 + X)) ; 2 * S(2) = (35 + 7Y + 35 + 5X) ; 2 * S(2) = (70 + 5X + 7Y) sq un
    10) Upper Triangle [BCF] Area = 2 * S(3) = X * (5 + Y) ; 2 * S(3) = (5X + XY) sq un
    11) 2 * S(1) = 2 * S(2) = 2 * S(3)
    12) 2 * S(1) = 2 * S(2) ; 7Y + XY = 70 + 5X + 7Y ; XY = 70 + 5X
    13) 2 * S(1) = 2 * S(3) ; 7Y + XY = 5X + XY ; 7Y = 5X
    14) 2 * S(2) = 2 * S(3) ; 70 + 5X +7Y = 5X + XY ; 70 + 7Y = XY
    15) Solving this System of Equations I get these Positive Solutions : X = 14 and Y = 10
    16) Rectangle Area = (AB * AD) sq un ; RA = (35 + 7(10) + 5(14) + (14)(10)) sq un
    17) Rectangle [ABCD] Area = 35 + 70 + 70 + 140 ; Rectangle [ABCD] Area = 280 + 35 ; Rectangle [ABCD] Area = 315 sq un
    Therefore,
    OUR FINAL ANSWER :
    Rectangle Area must be equal 315 Square Units.

    • @PreMath
      @PreMath  หลายเดือนก่อน +1

      Excellent!
      Thanks for sharing ❤️

  • @nuhumaishanu6944
    @nuhumaishanu6944 หลายเดือนก่อน

    Too long

  • @rajivb9493
    @rajivb9493 หลายเดือนก่อน

    315 Sq. Units