Can you find area of the Rectangle? | (Justify your answer) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 พ.ย. 2024

ความคิดเห็น • 80

  • @SkinnerRobot
    @SkinnerRobot 7 วันที่ผ่านมา +2

    Wow! You presented a brilliant solution. Thank you, PreMath.

    • @beiranvand4066
      @beiranvand4066 7 วันที่ผ่านมา

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  7 วันที่ผ่านมา

      Glad to hear that!
      You are very welcome!
      Thanks for the feedback ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 7 วันที่ผ่านมา +3

    Join AC diagonal. Now triangle ADC =triangle ABC
    >🔺 ADC - 🔺 EDC = 🔺 ABC - triangle FBC
    > 🔺 ACE = 🔺 ACF =S/2
    As ACE=S/2=1/2* base 5, height x
    🔺 EDC =S/2*2=1*2*(2*5)*height x
    So y =5+2*5=15
    Likewise
    x = 7+7*2=21
    Area of the rectangle =15*21=315 sq units

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 7 วันที่ผ่านมา +2

    The big rectangle is an enlargement of 7*5 rectangle .
    To divide the big rectangle in three equal areas,
    we have to get trice of length and breadth of 7*5 rectangle
    It means the length and breadth of the big rectangle will be
    7*3=21 and 5*3=15
    Area of rectangle =21*15=315 sq units.

  • @marioalb9726
    @marioalb9726 7 วันที่ผ่านมา +6

    S= xy/3 = ½x(y-5) = ½y(x-7)
    ⅔xy = xy -5x
    ⅔y = y-5
    ⅓y = 5 --> y = 15 cm
    ⅔xy = xy -7y
    ⅔x = x-7
    ⅓y = 7 --> x = 21 cm
    A = xy = 15*21 = 315cm² (Solved √)

    • @PreMath
      @PreMath  5 วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

  • @allanflippin2453
    @allanflippin2453 7 วันที่ผ่านมา +3

    I found a very simple approach. I don't see one similar in the comments. My apologies if I missed one.
    1) Draw diagonal AC. This divides the rectangle into two equal-sized triangles.
    2) The total rectangle area is 3S, so each triangle has area 1.5S
    3) Consider triangles ACF and BCF. Both have the same height (BC length), but the area of ACF is half of BCF. That means AF is half the length of BF. Thus BF = 14.
    4) Apply the same idea to ACE and DCE. AE is half the length of ED, so ED = 10.
    5) AB = 7 + 14 = 21. AD = 5 + 10 = 15. Total area = 21 * 15 = 315.

    • @PreMath
      @PreMath  5 วันที่ผ่านมา

      Excellent! Thanks for sharing your solution.

  • @onyemaechiepelle4302
    @onyemaechiepelle4302 6 วันที่ผ่านมา +2

    This is your teaching I enjoyed most; thanks.

    • @PreMath
      @PreMath  5 วันที่ผ่านมา +1

      You are very welcome! Thanks for the feedback ❤️

  • @andrewrose3830
    @andrewrose3830 7 วันที่ผ่านมา +2

    The central shape can be split into two triangles with the rectangle diagonal. This diagonal splits rectangle area in half, so must split the central shape in half two. Each triangle has area S/2. Using "area = (base x height)/2", this means FB must be twice 7 (FBC has twice area of FCA) so AB is 21. Similarly, ED is twice 5, so AD is 15. This area is 21*15 or 315.

  • @ИванПоташов-о8ю
    @ИванПоташов-о8ю 7 วันที่ผ่านมา +3

    Draw AC. Then Area(ABC)=1,5S, Area(AFC)=0,5S. AF:FB=Area(AFC): Area (FBC)=1:2. So, FB=2AF=14 and AB=21.
    AD=3AE= 15 (the same proof)
    Area(ABCD)=15*21=315

    • @PreMath
      @PreMath  5 วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

  • @jamestalbott4499
    @jamestalbott4499 7 วันที่ผ่านมา +2

    Thank you! I liked to the exposure to multiple equations when solving.

    • @PreMath
      @PreMath  5 วันที่ผ่านมา +1

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 7 วันที่ผ่านมา +2

    That’s very nice and enjoyable
    Thanks Sir
    You are very good
    With glades
    ❤❤❤❤❤

    • @PreMath
      @PreMath  5 วันที่ผ่านมา +1

      Thanks for the kind words!🙏

  • @uwelinzbauer3973
    @uwelinzbauer3973 5 วันที่ผ่านมา

    Hallo professor!
    I started like this:
    I added an auxiliary line connecting points A and C, dividing quadrilateral AECF into two triangles, making up the equation:
    S=(1/2)*5*x+(1/2)*7*y
    Remaining proceeding similar, three equations with three unknowns, leading to identical results.
    Thanks for sharing this interesting geometric puzzle 👍
    Happy weekend to you and the friends of the channel 😀

  • @soli9mana-soli4953
    @soli9mana-soli4953 7 วันที่ผ่านมา +1

    Being XY = 3S
    On 1) X*(Y-5) = 2S
    we have 5X = S
    On 2) Y*(X-7) = 2S
    we have 7Y = S
    tracing a perpendicular from F to DC and a perpendicular from E to BC we split the main rectangle in 4 small rectangles whose areas are:
    1) left high = 5*7 = 35
    2) right high = 5X - 35 = S - 35
    3) left low = 7Y - 35 = S - 35
    4) right low = (X-7)*(Y-5)= XY - 7Y - 5X +35 = 3S - S - S + 35 = 35 + S
    then multiplying crossed rectangles:
    35*(S+35) = (S-35)*(S-35)
    S = 105
    area = 3S = 3*105 = 315

    • @beiranvand4066
      @beiranvand4066 7 วันที่ผ่านมา

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

  • @imetroangola17
    @imetroangola17 7 วันที่ผ่านมา +3

    *Apontamento:*
    xy - 5x=2S, xy - 7y=2S e xy+ 7y=4S.
    Ora, xy = 3S. Então:
    3S - 5x=2S, 3S - 7y=2S e 3S+ 7y=4S. Assim,
    S= 5x e S=7y → *x=7y/5.*
    Logo,
    [ABCD] = xy= 7y²/5 e, por outro lado,
    [ABCD] = 3S = 21y. Assim,
    7y²/5 = 21y → y = 15. Portanto,
    [ABCD] = 21×15 = *_315 U.Q_*

    • @beiranvand4066
      @beiranvand4066 7 วันที่ผ่านมา

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  5 วันที่ผ่านมา +2

      Excellent!
      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 7 วันที่ผ่านมา +1

    With ED = a and FB = b, we have: rectangle area = 3.S = (7 +b).(5 +a); 2.triangle EDC area = 2.S = a.(7 +b); 2.triangle CBF area = 2.S = b.(5 +a).
    We replace (7+ b) by (3.S)/(5+ a) in the second equation and obtain (a.(3.S))/ (5+ a) = 2.S, we simplify by S and obtain (3.a)/(5+ a) = 2 giving a = 10
    In the same way we replace (5+ b) by (3.S)/(7+ b) in the third equation and obtain (3.b)/(7+ b) = 2, giving b = 14
    The side lengths of the rectangle are then AD = 5 + a = 15 and AB = 7 + b = 21, and the rectangle area is 15.21 = 315.

    • @beiranvand4066
      @beiranvand4066 7 วันที่ผ่านมา

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  5 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @cyruschang1904
    @cyruschang1904 7 วันที่ผ่านมา +2

    Rectangle area = 3S = WD = (7 + x)(5 + y)
    y/(5 + y) = 2/3
    3y = 10 + 2y
    y = 10
    x/(7 + x) = 2/3
    3x = 14 + 2x
    x = 14
    Rectangle area = (7 + x)(5 + y) = 21(15) = 315

    • @PreMath
      @PreMath  5 วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

    • @cyruschang1904
      @cyruschang1904 5 วันที่ผ่านมา

      @@PreMath Thank YOU

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l 7 วันที่ผ่านมา +2

    Thanks sir good ❤❤

    • @PreMath
      @PreMath  5 วันที่ผ่านมา +1

      You are very welcome!
      Thanks for the feedback ❤️

  • @JoanRosSendra
    @JoanRosSendra 7 วันที่ผ่านมา

    Otra forma:
    Trazamos la diagonal AC y la mediatriz desde el vértice C de los triángulos CFD y CED
    La figura queda dividida en 6 triángulos y cada uno de ellos tiene la misma área: S/2
    Por tanto, los que tienen la altura "y" han de tener la misma base (7), así que x=7*3=21
    Del mismo modo, los triángulos que tienen la altura "x" han de tener la misma base (5), así que y=5*3=15
    Área solicitada = 21*15 = 315 u²

  • @santiagoarosam430
    @santiagoarosam430 7 วันที่ผ่านมา +1

    bh/2= S+{5b/2)=S+(7h/2) ---> b=7h/5---> 35n²/3=35n ---> n=3---> b*h=(3*7)*(3*5) =21*15=315.
    Gracias y saludos

    • @beiranvand4066
      @beiranvand4066 7 วันที่ผ่านมา

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  5 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @adept7474
    @adept7474 7 วันที่ผ่านมา

    S(ABC) = 1,5S, S(FBC) = S. AF : BF = AE : DE = 1:2. (7 × 3) × (5 × 3) = 315.

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 7 วันที่ผ่านมา +1

    Sir
    3*🔺 CBE(S) =3[1/2*x*(y -5])=.xy (area of rectangle)
    > y =15
    Now3 🔺 CBF
    =3[1/2*y*(x-7)]=xy
    >x =21
    Area of the rectangle =21*15=315 sq units

    • @PreMath
      @PreMath  5 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 7 วันที่ผ่านมา +1

    My way of solution ▶
    Let's divide the quadrilateral AECF into two triangles :
    ΔAEC + ΔACF
    [AF]= 7
    [FB]= y
    [AE]= 5
    [ED]= x
    A(AECF)= S

    A(ΔAEC)= 5*(7+y)/2
    A(ΔACF)= 7*(5+x)/2

    S= 5*(7+y)/2 + 7*(5+x)/2
    S= (70+5y+7x)/2
    b) the triangle ΔEDC:
    A(ΔAEC)= x*(7+y)/2
    A(ΔAEC)= (7x+xy)/2
    c) the triangle ΔFCB:
    A(ΔFCB)= y*(5+x)/2
    A(ΔAEC)= (5y+xy)/2
    d) A(ΔAEC) = A(ΔAEC) = S
    (7x+xy)/2 = (5y+xy)/2
    7x+xy= 5y+ xy
    5y= 7x
    y= 7x/5
    e) A(AECF)= A(ΔAEC)= S
    (70+5y+7x)/2 = (7x+xy)/2
    70+5y= xy
    y= 7x/5

    70+ 5*(7x/5)= x*(7x/5)
    70+7x= 7x²/5
    both sides multiplied by 5
    350+35x= 7x²

    50+5x= x²
    x²-5x-50=0
    Δ= 25-4*1*(-50)
    Δ= 225
    √Δ= 15
    x₁= (5+15)/2
    x₁= 10
    x₂= (5-15)/2
    x₂= -5 ❌
    x₂ < 0

    x= 10
    y= 7*10/5
    y= 14
    S= (7x+xy)/2
    S= (7*10+10*14)/2
    S= 105 square units
    Arectangle= 3S
    Arectangle= 3*105
    Arectangle= 315 square units ✅

    • @PreMath
      @PreMath  5 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @phungpham1725
    @phungpham1725 7 วันที่ผ่านมา

    1/ Label a and b as the width and lenght of the rectangle respectively.
    Focus on the area of the triangle EDC:
    (a-5).b/2=ab/3-> (a-5)/2=a/3-> a= 15
    Similarly, (b-7).a/2= ab/3
    -> b=21
    Area of the rectangle=15x21= 315 sq units😅😅😅

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 7 วันที่ผ่านมา

    (5)^2 (7)^2={25+49}=74 {90°A+90°B+90°C+90°D}=360°ABCD/74=4.64 2^2.2^3^2^2 1^1.1^3^1^2 3^2 ((ABCD ➖ 3ABCD+2)

  • @JoanRosSendra
    @JoanRosSendra 7 วันที่ผ่านมา

    Yo tracé una perpendicular desde F al punto G del segmento DC, dividiendo la figura en dos rectángulos.
    El área de FBCG = 2S
    Por tanto el área de AFGD = S
    Si igualamos tenemos que
    (x-7)*y=2(7*y)
    xy-7y=14y
    xy=21y
    x=21
    Igualando las áreas de los triángulos rectángulos:
    (x-7)y/2=(y-5)x/2
    xy-7y=xy-5x
    y=5x/7
    y=5*21/7=15
    Área solicitada = 21*15 = 315 u²

  • @misterenter-iz7rz
    @misterenter-iz7rz 7 วันที่ผ่านมา +1

    Creative puzzle🎉. a(5+b)=b(7+a)=5(7+a)+7(5+b), 5a+ab=7b+ab=70+5a+7b, a(5¹×⁹1⁰/7)=70+5a, 』),

    • @beiranvand4066
      @beiranvand4066 7 วันที่ผ่านมา

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  5 วันที่ผ่านมา

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @zdrastvutye
    @zdrastvutye 4 วันที่ผ่านมา

    it is once again a nested calculation:
    10 print "premath-can you find area of the rectangle":dim x(5),y(5)
    20 l1=5:l2=7:sw=sqr(l1^2+l2^2)/57:n=l1*l2:goto 130
    30 da1=l2*(l1+l3):da2=l4*(l1+l3)/2:a1=l3*(l2+l4)/2:a2=da1+da2-a1
    40 a3=l4*(l1+l3)/2:dg=(a2-a1)/n:return
    50 l4=sw:gosub 30
    60 l41=l2:dg1=dg:l4=l4+sw:if l4>20*l1 then 110
    70 l42=l4:gosub 30:if dg1*dg>0 then 60
    80 l4=(l41+l42)/2:gosub 30:if dg1*dg>0 then l41=l4 else l42=l4
    90 if abs(dg)>1E-10 then 80
    110 return
    120 gosub 50:df=(a3-a2)/n:return
    130 l3=sw
    140 gosub 120:if l4>20*l1 then else 160
    150 l3=l3+sw:goto 140
    160 l31=l3:df1=df:l3=l3+sw:l32=l3:gosub 120:if df1*df>0 then 160
    170 l3=(l31+l32)/2:gosub 120:if df1*df>0 then l31=l3 else l32=l3
    180 if abs(df)>1E-9 then 170 else print a1,"%",a2,"%",a3:goto 200
    190 xbu=x*mass:ybu=y*mass:return
    200 masx=1200/(l2+l4):masy=850/(l1+l3):if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window.

  • @himo3485
    @himo3485 7 วันที่ผ่านมา +1

    AD=BC=x AB=DC=y
    ED=x-5 DC=y FB=y-7 BC=x (x-5)y/2=(y-7)x/2
    xy-5y=xy-7x 5y=7x y=7x/5
    AECF=5*7x/5*1/2 + 7*x*1/2 = 7x
    S = 7x S*3 = 7x*3 = 21x = x*7x/5 = 7x²/5 7x²/5 - 21x = 0 7x² -105x = 0 7x(x - 15) = 0 x>0 , x=15
    Rectangle area = 21*15 = 315

    • @beiranvand4066
      @beiranvand4066 7 วันที่ผ่านมา +1

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  5 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @pranavamali05
    @pranavamali05 7 วันที่ผ่านมา +1

    👋

    • @PreMath
      @PreMath  5 วันที่ผ่านมา +1

      Excellent!😀
      Thanks for the feedback ❤️

  • @WernHerr
    @WernHerr 7 วันที่ผ่านมา +7

    My solution:1/3 (ABCD) = (ECD), so x*(y-5)/2=x*y/3, 3xy-15x=2xy , xy=15x and y=15, x=21

    • @marcgriselhubert3915
      @marcgriselhubert3915 7 วันที่ผ่านมา +2

      OK, you obtain y = 15, but you need something else to obtain x. With only one equation you cannot find two unknown values.

    • @WernHerr
      @WernHerr 7 วันที่ผ่านมา +2

      @@marcgriselhubert3915 You are absolutely right. I also used: 1/3 (ABCD) = (FBC) with y*(x-7)/2=x*y/3 and x=21.

    • @beiranvand4066
      @beiranvand4066 7 วันที่ผ่านมา

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @marcgriselhubert3915
      @marcgriselhubert3915 7 วันที่ผ่านมา +1

      @@WernHerr OK then.

    • @srimathisubramaniyam9099
      @srimathisubramaniyam9099 5 วันที่ผ่านมา

      ​@@WernHerrAre you sure
      Area of the three parts are equal

  • @aljawad
    @aljawad 7 วันที่ผ่านมา +1

    I solved it simply by using the third equation: 3S =(x)*(y).

    • @beiranvand4066
      @beiranvand4066 7 วันที่ผ่านมา

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  5 วันที่ผ่านมา +1

      Thanks for the feedback ❤️

  • @КонстантинМирошниченко-щ5о
    @КонстантинМирошниченко-щ5о 5 วันที่ผ่านมา

    5*x=S 7*y=S y=5*3 (т.к. S 3шт.) x=7*3 (т.к. S 3шт.) y=15 x=21 area=15*21=315

  • @unknownidentity2846
    @unknownidentity2846 7 วันที่ผ่านมา +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Let w=AB=CD and h=AD=BC be the width and the height of the rectangle, respectively. Since the triangles BCF and CDE have the same area as the quadrilateral AECF, we can conclude:
    A(ABCD) = w*h = 3*S ⇒ S = w*h/3
    (1) S = w*h/3
    (2) S = A(BCF) = (1/2)*BC*BF = (1/2)*BC*(AB − AF) = (1/2)*h*(w − 7)
    (3) S = A(CDE) = (1/2)*CD*DE = (1/2)*CD*(AD − AE) = (1/2)*w*(h − 5)
    (4) S = A(AECF) = A(ACE) + A(ACF) = (1/2)*AE*CD + (1/2)*AF*BC = (1/2)*5*w + (1/2)*7*h = 5*w/2 + 7*h/2
    The combination of equation (2) and equation (3) results in:
    (1/2)*h*(w − 7) = (1/2)*w*(h − 5)
    h*(w − 7) = w*(h − 5)
    h*w − 7*h = h*w − 5*w
    −7*h = −5*w
    ⇒ w = 7*h/5
    The combination of this result with equation (1) and equation (4) results in:
    w*h/3 = S = 5*w/2 + 7*h/2 = 5*(7*h/5)/2 + 7*h/2 = 7*h/2 + 7*h/2 = 7*h
    ⇒ w = 21
    ⇒ h = 5*w/7 = 5*21/7 = 15
    Now we are able to calculate the area of the rectangle:
    A(ABCD) = w*h = 21*15 = 315
    Best regards from Germany

    • @PreMath
      @PreMath  5 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @anthonyheaton5798
    @anthonyheaton5798 5 วันที่ผ่านมา

    3S

  • @giuseppemalaguti435
    @giuseppemalaguti435 7 วันที่ผ่านมา +1

    315

    • @PreMath
      @PreMath  5 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 7 วันที่ผ่านมา +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) AF = 7 lin un
    02) FB = X lin un
    03) AB = (7 + X) lin un
    04) AE = 5 lin un
    05) ED = Y lin un
    06) AD = (5 + Y) lin un
    07) Rectangle Area = (AB * AD) sq un ; RA = (7 + X) * (5 + Y) ; RA = (35 +7Y + 5X + XY) sq un
    08) Bottom Triangle [CDE] Area = 2 * S(1) = Y * (7 + X) ; 2 * S(1) = (7Y + XY) sq un
    09) Middle Quadrilateral [AECF] Area = 2 * S(2) = (7 * (5 + Y)) + (5 * (7 + X)) ; 2 * S(2) = (35 + 7Y + 35 + 5X) ; 2 * S(2) = (70 + 5X + 7Y) sq un
    10) Upper Triangle [BCF] Area = 2 * S(3) = X * (5 + Y) ; 2 * S(3) = (5X + XY) sq un
    11) 2 * S(1) = 2 * S(2) = 2 * S(3)
    12) 2 * S(1) = 2 * S(2) ; 7Y + XY = 70 + 5X + 7Y ; XY = 70 + 5X
    13) 2 * S(1) = 2 * S(3) ; 7Y + XY = 5X + XY ; 7Y = 5X
    14) 2 * S(2) = 2 * S(3) ; 70 + 5X +7Y = 5X + XY ; 70 + 7Y = XY
    15) Solving this System of Equations I get these Positive Solutions : X = 14 and Y = 10
    16) Rectangle Area = (AB * AD) sq un ; RA = (35 + 7(10) + 5(14) + (14)(10)) sq un
    17) Rectangle [ABCD] Area = 35 + 70 + 70 + 140 ; Rectangle [ABCD] Area = 280 + 35 ; Rectangle [ABCD] Area = 315 sq un
    Therefore,
    OUR FINAL ANSWER :
    Rectangle Area must be equal 315 Square Units.

    • @PreMath
      @PreMath  5 วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

  • @wasimahmad-t6c
    @wasimahmad-t6c 7 วันที่ผ่านมา +1

    S=105)(15×21=315fullarea

    • @beiranvand4066
      @beiranvand4066 7 วันที่ผ่านมา

      th-cam.com/video/0MA5NTkwFfI/w-d-xo.htmlsi=zMDpJAFhS83KjP4b

    • @PreMath
      @PreMath  5 วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @nuhumaishanu6944
    @nuhumaishanu6944 4 วันที่ผ่านมา

    Too long

  • @rajivb9493
    @rajivb9493 3 วันที่ผ่านมา

    315 Sq. Units