Solving congruences, 3 introductory examples

แชร์
ฝัง
  • เผยแพร่เมื่อ 8 ก.พ. 2025
  • Learn how to solve basic linear congruences for your number theory class. We will solve
    1. 4x is congruent to 8 (mod 5)
    2. 4x is congruent to 2 (mod 5)
    3. 4x is congruent to 3 (mod 5)
    💪 Support this channel and get my math notes by becoming a patron: / blackpenredpen

ความคิดเห็น • 149

  • @rb1471
    @rb1471 6 ปีที่แล้ว +102

    You can solve the third one either way,
    1)
    4x = 3 (mod 5)
    -1x = 3 (mod 5)
    x = -3 (mod 5)
    x = 2 (mod 5)
    2)
    4x = 3 (mod 5)
    4x = 3 + 5 (mod 5)
    4x / 4 = 8 / 4 (mod 5) (gcd(4, 5) = 1)
    x = 2 (mod 5)
    It's interesting how you can simplify either side by multiples of 5 to get the answer, really enforces the idea that it is "mod 5".

  • @OonHan
    @OonHan 6 ปีที่แล้ว +83

    BLACK PEN RED PEN
    *_YAYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY_*

  • @BigDBrian
    @BigDBrian 6 ปีที่แล้ว +177

    note, for this comment = will replace the congruence symbol
    4x = 3 (mod 5)
    4x = 8 (mod 5)
    x = 2 (mod 5)

    • @blackpenredpen
      @blackpenredpen  6 ปีที่แล้ว +21

      Yup!

    • @kevinm1317
      @kevinm1317 6 ปีที่แล้ว +2

      Piyush Sarangi Yes, but there's no reason to.

    • @ritwiksharma7021
      @ritwiksharma7021 6 ปีที่แล้ว

      Why do we add mod 5 to 3? Please send the respective theorem.

    • @awawpogi3036
      @awawpogi3036 6 ปีที่แล้ว +3

      @@ritwiksharma7021 it's because 3 (mod 5) is the same as 8 (mod 5)

    • @raquiliosamuela.depoloniaj2446
      @raquiliosamuela.depoloniaj2446 5 ปีที่แล้ว +2

      -x = 3 (mod 5)
      x = -3 (mod 5)
      x = 2 (mod 5)

  • @elsavelaz
    @elsavelaz 6 ปีที่แล้ว +7

    I wish it had the final solution to self-check understanding, because if it was "so easy," I wouldn't have googled help. Cute vid, good explanation, just please finish the examples!

  • @FrogworfKnight
    @FrogworfKnight 3 ปีที่แล้ว +18

    Not certain if this is a weird method for the second one but...
    4x≡2(mod 5)
    2x≡1(mod 5) [divide by two, since gcd(2,5)=1 and 2/2 gives an integer answer]
    2x≡6(mod 5) [increasing 1 by one modular 5 cycle to 6]
    x≡3(mod 5) [divide by two, since again gcd (2,5)=1 and 6/2 gives an integer answer]

  • @blackpenredpen
    @blackpenredpen  6 ปีที่แล้ว +116

    First!!!!!

    • @AlgyCuber
      @AlgyCuber 6 ปีที่แล้ว +4

      eigth ...

    • @TheLaughterAsylum
      @TheLaughterAsylum 6 ปีที่แล้ว +2

      Blackpenredpen 57th

    • @nigit7451
      @nigit7451 6 ปีที่แล้ว +1

      (2^2=2(2)=2+2=4)th reply

    • @anbn2618
      @anbn2618 6 ปีที่แล้ว

      551st (mod2)​

    • @gorymclorry7414
      @gorymclorry7414 6 ปีที่แล้ว +2

      Is the answer to the third question:
      x is congruent to 2 (mod 5)?
      Steps:
      4x ≡ 3 (mod 5)
      -1x ≡ 3 (mod 5) like step 2.
      x ≡ -3 (mod 5)
      x ≡ 2 (mod 5)
      One doubt: Y didn't you use the same method of making it -1x in example 1?

  • @muhammadhamid3108
    @muhammadhamid3108 10 หลายเดือนก่อน +1

    4x=3 mod 5
    (5x-x)=3 mod 5
    -x=3 mod 5
    x=-3 mod 5
    x=2 mod 5
    Thank you so much Black Pen Red Pen.

  • @Nothingness1305
    @Nothingness1305 13 วันที่ผ่านมา

    4x ≡ 3 mod 5. There exists a solution because gcd(4, 5) = 1 which divides 3.
    Observe that ([4]₅)⁻¹ = [4]₅ since [4]₅[4]₅ = [4•4]₅ = [16]₅ = [1]₅. So we have
    4x ≡ 3 mod 5
    ⇔ x ≡ 12 mod 5
    ⇔ x ≡ 2 mod 5

  • @akshat9282
    @akshat9282 6 ปีที่แล้ว +9

    For the third one, just add 5 to the right side and it becomes the same as the first equation.

  • @Destroyerz117
    @Destroyerz117 3 หลายเดือนก่อน

    these helped out a ton, thank you so much

  • @hungryfareasternslav1823
    @hungryfareasternslav1823 5 ปีที่แล้ว +17

    3:38 When you finish the number theory

  • @snnwstt
    @snnwstt 4 หลายเดือนก่อน

    I have not perused all the answers, but we can clearly multiply both sides by 4.
    Left side, 4*4X = 16 X = 1 X (mod 5) --- since (A*B) | C == ( (A|C) * (B|C) ) | C
    Right side : 4* 3 = 12 = 2 (mod 5)
    So X = 2 (mod 5).
    In fact, in AX=B (mod C), when pgcd(A, C) =1, then A has an inverse, Q, such that Q*A=A*Q = 1 ( mod C).
    Note that 1 and (C-1) are their own inverse mod C, that is, (C-1)^2 = 1 mod C (since C^2 -2C + 1 = 1 mod C )
    Otherwise, A has a zero-producing-multiplier such that A*P = P*A = 0 (mod C) while neither A, neither P being 0 (such as 2*3 = 0 (mod 6) )
    An integer A can either have an inverse, either a zero-multiplier, but not both, for given modulo.
    So, C as prime number will have all its classes having an inverse (except its class 0) since C being prime cannot have A*B = C, with A and B integers between 1 and C-1, so modulo C cannot produce any zero-multiplier among its classes.
    If the pgcd(A, C) > 1, we may have multiple solutions ( 3X = 6 mod 9 has X=2, 5 and 8 as solutions), or none ( 3X = 5 mod 9 has no solution). The second member, B in AX=B mod C, must be divisible by D = pgcd(A, C) to have at least a solution, and owns D distinct solutions (among its classes) each of them "distant" for C\D
    (back to 3X = 6 mod 9, we have D=3, and the D solutions are distant of C\D = 3, as are 2+3 = 5, 5+3=8 and 8+3 = 2 mod 9 ).

  • @monicawughanga3338
    @monicawughanga3338 5 หลายเดือนก่อน

    this was so helpful! thanks!

  • @emmanuelmercy3840
    @emmanuelmercy3840 ปีที่แล้ว +11

    The one I even want u to do u did not do it self🤨

  • @deidara_8598
    @deidara_8598 3 ปีที่แล้ว +1

    Trick: 4 = -1 (mod 5)
    4x = 8 (mod 5) -x = 8 (mod 5)
    4x = 2 (mod 5) -x = 2 (mod 5)
    4x = 3 (mod 5) -x = 3 (mod 5)
    Of course all of them are trivial
    -x = 8 (mod 5) x = 5k-3 for any integer k (8 = 3 mod 5)
    -x = 2 (mod 5) x = 5k-2 for any integer k
    -x = 3 (mod 5) x = 5k-3 for any integer k

  • @angelaking9701
    @angelaking9701 4 หลายเดือนก่อน

    wow finally in understand the mod function thank u so much !!!

  • @jonashammerich3552
    @jonashammerich3552 6 ปีที่แล้ว +12

    I really love your mic! still!!! And that intro was soooooooooo cute!!

    • @blackpenredpen
      @blackpenredpen  6 ปีที่แล้ว +3

      Thank you!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

  • @Danicker
    @Danicker 4 ปีที่แล้ว +17

    For the second one you could also do:
    4x = 2mod5
    4x = 12mod5 (+10)
    x = 3mod5 (/4)

    • @mahlet5396
      @mahlet5396 2 ปีที่แล้ว

      76

    • @Apollorion
      @Apollorion 8 หลายเดือนก่อน

      Danicker, I think you didn't divide by three but by four, ao because I used this method myself, too.

    • @Danicker
      @Danicker 8 หลายเดือนก่อน +1

      @@Apollorion Yes, you're right!

  • @rexevan6714
    @rexevan6714 6 ปีที่แล้ว +46

    So that's where the black pen red pen yay coming from

  • @cloud_245
    @cloud_245 2 ปีที่แล้ว

    2:53 Why do we want the answer to be as positive as possible?

  • @chancerc7523
    @chancerc7523 ปีที่แล้ว

    Assume the equal signs are congruences, due to keyboard limitations.
    Given 4x=2 (mod 5),
    Can you just do:
    4x=2=12 (mod 5)
    => 12/4=3, hence
    {xEZ: x=3 (mod 5/1)} is set of all solutions.

  • @AviMehra
    @AviMehra 6 ปีที่แล้ว +4

    No need to combine. Just add 5 to right side and you get the 1st

    • @blackpenredpen
      @blackpenredpen  6 ปีที่แล้ว +2

      Yup, that's exactly the way I had in mind : )

  • @sugarfrosted2005
    @sugarfrosted2005 6 ปีที่แล้ว +10

    alternative method would be multiplying by the inverse of 4 aka 4. Granted this is harder in the general case because computing the inverse usually takes more time.

    • @blackpenredpen
      @blackpenredpen  6 ปีที่แล้ว +1

      yup!

    • @deidara_8598
      @deidara_8598 3 ปีที่แล้ว

      With the Euclidian algorithm it usually only takes 2 or 3 rounds on smaller numbers, can be done in seconds on a calculator.

  • @shandyverdyo7688
    @shandyverdyo7688 5 ปีที่แล้ว +1

    I'm very grateful to u.
    Thanks and nice timing that i need this one.

  • @tptangeek814
    @tptangeek814 6 ปีที่แล้ว +2

    It's interesting how fast you solve these equations!
    I'm in highschool in France, and to solve for example 4x ≡ 3 [5] we do so:
    4x ≡ 3 [5] ⇔ ∃y ∈ ℤ, 4x − 5y = 3
    Considering the equation 4x − 5y = 3, where (x ; y) ∈ ℤ², we will first find a particular solution. In this case, we can just take x = − 3 and y = − 3, which leads us to 4x − 5y = 4 × (− 3) − 5 × (− 3) = − 12 + 15 = 3.
    Next, we can say that if (x ; y) is solution, then we have 4x − 5y = 3 = 4 × (− 3) − 5 × (− 3), so
    4x − 5y − (4 × (− 3) − 5 × (− 3)) = 4x − 5y + 4 × 3 − 5 × 3, and finally 4(x + 3) = 5(y + 3).
    At this point, we use the Gauss' theorem that tells us that because GCD(4 ; 5) = 1, (x + 3) can be divided by 5 and (y + 3) can be divided by 4. So we get x + 3 = 5k and y + 3 = 5k', where (k ; k') ∈ ℤ², which means that x ≡ − 3 [5], which can be written as x ≡ 2 [5].

    • @touhami3472
      @touhami3472 4 ปีที่แล้ว

      Bonjour,
      Très vite resolu, en effet ! Ça fait une sacrée différence.
      J'ai été encore plus surpris quand il a divisé par 4 dans 4x=8 [5] : c'est tabou en France d'utiliser la division dans les congruences.
      Je me suis penché sur sa démonstration, je n'y ai jamais pensé auparavant.
      En fait, c'est très simple ;
      ax=b[n] il exst k dans Z tq:
      ax=b+n×k ce qu'on sait en France mais on n'allait pas plus loin:
      Ici, 4x=8[4] eqvt à 4(x-2)=5×k eqvt à 4 divise k car pgcd(4,5)=1 (Bezout):
      k=4×k' , k' dans Z. k existe bel et bien d'où l'équivalence.
      Bonne journée.

  • @plaustrarius
    @plaustrarius 6 ปีที่แล้ว +10

    i love this intro!!!
    sidenote! have you seen the simpson's 'fake fermat' equations?
    [3987]^12 + [4365]^12 = [4472]^12
    [1782]^12 + [1841]^12 = [1922]^12
    are these statements true? illustrate why or why not using only pencil, paper, and/or calculator.
    but not a computer or computer algebra program!

    • @brunoandrades5530
      @brunoandrades5530 6 ปีที่แล้ว +5

      Early Kyler The second one is pretty easy, you easily see that if it were true, that would imply that an odd number plus an even number equals an even number, and that's not true, you can do the same with the second but in mod 4 I think

    • @plaustrarius
      @plaustrarius 6 ปีที่แล้ว +2

      Bruno Andrades mod 3! But yes lol

    • @brunoandrades5530
      @brunoandrades5530 6 ปีที่แล้ว +2

      Early Kyler Oh, ty, I didn't actually try it, but it seemed like

    • @blackpenredpen
      @blackpenredpen  6 ปีที่แล้ว +4

      Thanks!!! And yes I have seen them and will do a video on them too.

    • @purushotamgarg8453
      @purushotamgarg8453 6 ปีที่แล้ว

      Early Kyler BlackPenRedPen can't do it using only pencil, paper and calculator....
      He needs the power of Blue marker......

  • @MiketheCoder
    @MiketheCoder 4 ปีที่แล้ว

    NEEDED THIS!!

  • @sergioh5515
    @sergioh5515 6 ปีที่แล้ว +4

    2 videos on modular arithmetic back after back! :D thanks again. I really like the videos a lot thnx. Mainly cuz I actually like modular arithmetic haha thnx again!!!!!!!

  • @chaosredefined3834
    @chaosredefined3834 4 ปีที่แล้ว +2

    Alternatively:
    4x = 2 mod 5
    2 is not divisible by 4, try adding 5.
    4x = 7 mod 5
    7 is also not divisible by 4, try adding 5 a second time.
    4x = 12 mod 5
    12 is divisible by 4, and gcd(4,5) = 1, so we can divide by 4.
    x = 3 mod 5.
    If you add 5 five times, and it's never divisible by 4, then there is no answer.

  • @Singlton
    @Singlton ปีที่แล้ว +1

    What is the purpose of doing this in the real world Applications?

  • @cerendemir9977
    @cerendemir9977 4 ปีที่แล้ว +1

    This is just what I needed. Thank you!

  • @PHOENIX-mv3uc
    @PHOENIX-mv3uc 4 ปีที่แล้ว

    7x^3+2x^2+x congruent to 0[2]

  • @ruby_detected6089
    @ruby_detected6089 3 ปีที่แล้ว

    Thanks​ for​ making​ this​ video, It​ really​ helps​ me​🙏😭

  • @kenza1024
    @kenza1024 ปีที่แล้ว

    Bro you helped me thank you

  • @Ethan-mj6wy
    @Ethan-mj6wy 6 ปีที่แล้ว +4

    Thank you for all the high quality videos bprp, they are much appreciated 💜

  • @holyshit922
    @holyshit922 ปีที่แล้ว

    Multiply by 4^{-1} mod 5 = 4

  • @optionf4
    @optionf4 3 ปีที่แล้ว

    tysm this video helped a lot :)

  • @TheLaughterAsylum
    @TheLaughterAsylum 6 ปีที่แล้ว +1

    Is this correct
    Note :- please replace = sign with congruent sign.
    4x=3(mod5)
    X=-3(mod5)
    X=2(mod5) thats it!!!
    Please check my answer.

  • @pritambhagat9662
    @pritambhagat9662 4 ปีที่แล้ว

    4x=3(mod 5)
    -1x=3(mod 5)
    -1×-1x=-1×3(mod 5)
    x=-3(mod 5)
    x=2(mod 5)
    Yaa i got it ...Yahoo 🤘🤘🤘

  • @touhami3472
    @touhami3472 4 ปีที่แล้ว +2

    Très intéressant !
    Merci beaucoup.

  • @kinyutaka
    @kinyutaka 6 ปีที่แล้ว

    4X cong 3 mod 5, 5+3=8, 8/4=2. X=2.

  • @diablo3879
    @diablo3879 5 ปีที่แล้ว +4

    can u tell how can I solve similar questions where equation is x^2 = a (mod p), here value of x and a is known , how can i find p

  • @ajayagrawal1090
    @ajayagrawal1090 6 ปีที่แล้ว

    Awesome quick solver
    Great job!!!

  • @heyitsfrknfrank
    @heyitsfrknfrank 6 ปีที่แล้ว +2

    Lord god and savior! I have found you! My professor and the book made everything so much complicated!

  • @manishk45
    @manishk45 5 ปีที่แล้ว +2

    At 2:49 you went against my prediction. You should have multiplied both sides by -1.

  • @nobee6497
    @nobee6497 4 ปีที่แล้ว

    4x=3(mod5)
    -x=3 (mod5)
    x=-3 (mod5)
    x=2 (mod 5)
    ----- final answer
    is the process correct?

    • @Apollorion
      @Apollorion 8 หลายเดือนก่อน

      It is one of the correct processes. I myself added 0 mod 5 = 5 mod 5 to the equation and got a copy of question (1) en retour. Same question? -> Same results.

  • @ms.p2832
    @ms.p2832 3 ปีที่แล้ว

    3) x = 2(mod 5)

  • @healthybodytoday
    @healthybodytoday 4 ปีที่แล้ว

    Thank you very much for these!

  • @redriot8726
    @redriot8726 3 ปีที่แล้ว

    4 x k 2(mod3) find the value of integer x

  • @javierlim4873
    @javierlim4873 6 ปีที่แล้ว +11

    The answer to the last one is 2(mod5) right?

    • @crosby7319
      @crosby7319 6 ปีที่แล้ว +2

      Yes, that is correct. Basically, apply the same method as no. 2 to get x = -3 (mod 5), i.e. x = 2 (mod 5)

    • @poonamkabra6367
      @poonamkabra6367 6 ปีที่แล้ว

      Yeah!!

  • @mryip06
    @mryip06 4 ปีที่แล้ว

    How can you solve 720n ≡ -1 (mod 2027) ?
    I can only make use of Chinese remainder theorem and solving Diophantine equation. I look forward to learn other methods from you. You are a great teacher. Thanks for your sharing.

    • @ouraghyoussef5612
      @ouraghyoussef5612 3 ปีที่แล้ว

      Bonjour
      je pense que votre question concerne la résolution de l'équation 720n_=-1[2027]. Si c'est cela alors voila cette solution obtenue au moyen du schéma d'Ouragh
      2027....720.......587......133......55.......23......9.......5.....4.......1
      ...............-2.........-1.........-4.........-2........-2.....-2.......-1...-1
      .............442.....-157......128......-29.......12....-5........2...-1.......1
      et donc on aura n_=442*(-1)[2027] soit n_=2026[2027]
      Cordialement.

  • @soumyachandrakar9100
    @soumyachandrakar9100 6 ปีที่แล้ว +2

    Blackpen-Redpen!!!!!! yay!!!!!!

  • @Rubiks892
    @Rubiks892 3 ปีที่แล้ว

    why does the gcd = 1 thing work for dividing?

  • @RainBarrelable
    @RainBarrelable 6 ปีที่แล้ว

    I love these videos!!!

  • @swetagupta6254
    @swetagupta6254 4 ปีที่แล้ว

    Can one solve:5x is congruent to 1 modulo 12 with the same method??

  • @obinnanwakwue5735
    @obinnanwakwue5735 3 ปีที่แล้ว

    4x congruent to 3 (mod 5)
    4x congruent to -2 (mod 5)
    -x congruent to -2 (mod 5)
    x congruent to 2 (mod 5)
    yay!

  • @khalidmomandd
    @khalidmomandd ปีที่แล้ว

    Can you solve this equation step by step (2)^x +x =37

  • @alancristopher3539
    @alancristopher3539 2 ปีที่แล้ว

    How Prove that for all n the following congruence holds: n^3≡n(mod 3)?

  • @giixgiggidygao4569
    @giixgiggidygao4569 3 ปีที่แล้ว

    Is the last one x congruent to 2 mod 5

  • @RandomDays906
    @RandomDays906 6 ปีที่แล้ว

    -x=-2(mod 5)
    x=2(mod 5)

  • @lamug
    @lamug 4 ปีที่แล้ว

    No se nada de inglés pero me ayudo mucho jajajaj gracias!!!

  • @niclo6285
    @niclo6285 6 ปีที่แล้ว

    4x=3 (mod 5)
    4x=8 (mod 5)
    x=2 (mod 5)
    Am I right ?

  • @youturn9870
    @youturn9870 5 ปีที่แล้ว

    How we solve 2x congrent(mod7)?? Please

  • @yoavshati
    @yoavshati 6 ปีที่แล้ว

    Can you do the inegral of ln(ln(x))?

  • @youturn9870
    @youturn9870 5 ปีที่แล้ว

    2x congrent 7 (mod17)

  • @OjoNike-x4l
    @OjoNike-x4l 3 หลายเดือนก่อน

    Please l want you to solve some questions 4X =1

  • @reshmasahu1567
    @reshmasahu1567 5 ปีที่แล้ว

    What is the answer of 4x=3 mod 7

    • @Apollorion
      @Apollorion 8 หลายเดือนก่อน

      It is (sort of) known.
      > 4-7=-3 => 4x=-3x mod 7 => (4x=3 mod 7 -3x=3 mod 7)
      > 7-1=6 => -1=6 mod 7
      And so:
      4x=3 mod 7 -3x=3 mod 7 x=-1 mod 7 x=6 mod 7 => x=6+7k with k being any integer

  • @orlandomathlearningacademy9154
    @orlandomathlearningacademy9154 5 ปีที่แล้ว

    4mod5 =-1?? Remainder cannot be negative

  • @denilsoncosta31415
    @denilsoncosta31415 6 ปีที่แล้ว

    You can show proof if the sum of each number of a big number is divided by 3, then this number is divided by 3.

  • @emersonrodriguescoutinho1344
    @emersonrodriguescoutinho1344 6 ปีที่แล้ว

    Obrigado!!!

  • @AmitKumar-ho3mr
    @AmitKumar-ho3mr 6 ปีที่แล้ว

    Sir,if a^5 b+3 is congruent to o,1,or -1 mod 9 then a^5 b is congruence to 5,6,or 7mod 9.why????????sir, i request u to explain it asap becoz i am in trouble.

    • @Apollorion
      @Apollorion 8 หลายเดือนก่อน

      Let's start with, for ease of expression: a^5 b = y then the question becomes:
      y+3=x mod 9 with x equal to 0, 1 or --1 then why is y = 5, 6 or 7 mod 9 ?
      All you have to do is subtract 3 from LHS and RHS, and add 9 to the RHS to get it positive. You can do so because 9 mod 9 = 0 mod 9

  • @akmadisangkulapersonal
    @akmadisangkulapersonal 3 ปีที่แล้ว

    Goodexplaining

  • @themathaces8370
    @themathaces8370 4 ปีที่แล้ว

    2.
    Notice that 4x=2 (mod 5)=12 (mod 5)
    So we have 4x=12 (mod 5). Dividing both sides by 4, we have x=3 (mod 5)
    3.
    Notice that 4x=3 (mod 5)=8 (mod 5)
    So we have 4x=8 (mod 5). Dividing both sides by 4, we have x=2 (mod 5)
    Remark:
    Note that the 'mod 5' will stay no matter what. This means that we can try values, and guess and check.
    Best,
    The Math Aces

  • @not.u768
    @not.u768 2 ปีที่แล้ว +1

    Hey plz help with this
    17x = 1 mod 5

    • @Apollorion
      @Apollorion 8 หลายเดือนก่อน +1

      17x mod 5 = 15x+2x mod 5 = 2x mod 5
      1 mod 5 = 1 + 0 mod 5 = 1 + 5 mod 5 = 6 mod 5
      And so:
      17x = 1 mod 5 = 2x = 6 mod 5 => x = 3 mod 5
      That was very difficult, right?

  • @Magic73805
    @Magic73805 6 ปีที่แล้ว +1

    Sir, Can I ask you something?

    • @blackpenredpen
      @blackpenredpen  6 ปีที่แล้ว +1

      Ved Prakash yes?

    • @Magic73805
      @Magic73805 6 ปีที่แล้ว +1

      Sir, What is your wife's name?😂😂😂

    • @blackpenredpen
      @blackpenredpen  6 ปีที่แล้ว +3

      You already know!

    • @Magic73805
      @Magic73805 6 ปีที่แล้ว

      Really Sir, I don't know.

  • @SKris7
    @SKris7 5 ปีที่แล้ว +1

    Is 8 mod 5 even legit?

    • @TomSkinner
      @TomSkinner 3 ปีที่แล้ว

      I don't think it is

  • @soniakamboj2916
    @soniakamboj2916 6 ปีที่แล้ว

    x=2(mod5)

  • @nikoskypseli1368
    @nikoskypseli1368 6 ปีที่แล้ว

    Excelent!!! what the result of a^((p-1)/k) mod p where a^(1/k) not integer.
    Thanks in advance.

  • @ZelForShort
    @ZelForShort 6 ปีที่แล้ว +1

    What's mod tho. New concept for me

    • @blackpenredpen
      @blackpenredpen  6 ปีที่แล้ว

      Alpha Designs you can watch my previous video. :)

    • @ZelForShort
      @ZelForShort 6 ปีที่แล้ว +1

      blackpenredpen Thank you

  • @SoyFerchow
    @SoyFerchow 6 ปีที่แล้ว +1

    I love you.

  • @bhsacademy1590
    @bhsacademy1590 ปีที่แล้ว

    Hello sir

  • @arphano51
    @arphano51 4 ปีที่แล้ว

    On n'a pas le droit de diviser des congruences aussi facilement que ça. Il suffit de faire un tableau de congruences et on trouve facilement les solutions

  • @Judas9901
    @Judas9901 4 ปีที่แล้ว

    Puedes ayudarme con este ejercicio x^5 - 3x^4 + x - 2=0( mod 165)

  • @TheLaughterAsylum
    @TheLaughterAsylum 6 ปีที่แล้ว +2

    Yayyyy

  • @tawfeeqmuallem9086
    @tawfeeqmuallem9086 6 ปีที่แล้ว

    mfkr i opened the video for the third example

  • @roannemaeordas3184
    @roannemaeordas3184 4 ปีที่แล้ว

    Please enlighten me please. 😭

  • @no0rd0ll26
    @no0rd0ll26 5 ปีที่แล้ว

    Bhai ap apna bolny ka styl thk kryn xara b ni smj ati apki
    ...actions e ni khtm hoty ap k tou

  • @dusutiwary9456
    @dusutiwary9456 6 ปีที่แล้ว

    Yay!!!!!

  • @suneetiyer81
    @suneetiyer81 6 ปีที่แล้ว

    Hey! could someone please help me with this problem on geometry of complex numbers?
    Find the centre, radius and arc length of the arc of the circle formed by the set of all complex numbers satisfying arg [(z-5+4i) ÷ (z+3-2i)] = -π/4.

  • @YeWinHtet-e3r
    @YeWinHtet-e3r ปีที่แล้ว

    lee le kmkl

  • @onkarrout
    @onkarrout ปีที่แล้ว

    That's was damn easy to learn, thanks bruh! 🫂❤️

  • @kidszone6850
    @kidszone6850 4 ปีที่แล้ว

    x=2(mod 5)